• Title/Summary/Keyword: Frequency gain

Search Result 2,417, Processing Time 0.024 seconds

Study on the Ultra-Wideband Microwave Amplifier Design for MMIC (MMIC용 초광대역 마이크로파 증폭기설계에 관한 연구)

  • 이영철;신철재
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 1992
  • To design of Ultra-wideband amplifier, we analyzed the inductor peaking to reduce the capacitance effect of GaAs MESFET in upper frequency edge. And we deduced an optimun inductor peaking element from transfer function of GaAs MESFET small-signal equivalent circut and realized the Feedback Amplifier Module (FAM) having flat gain. We design the imput and output impe dance matching networks by Real-Frequency Method. It show that the gain of designed amplifier has a 6.38dB with gain variation 0.56 at 0.1~12 GHz frequency gand by computer simu-lation.

  • PDF

A New Track-following Control Method Using Disturbance Observer with the Freedom of Gain and Frequency Adaptation (이득의 자유도와 주파수 적응성을 가진 외란 관측기를 사용한 새로운 트랙 추종 제어 기법)

  • Jung, Woo-Min;Kim, Eun-Tai
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.360-362
    • /
    • 2006
  • This paper proposes a new track-following control method using disturbance observer with the freedom of gain and frequency adaptation in optical disk drive system. Recent ODDs use smaller track pits, higher rotation speed and broader rotational speed variations to increase the data capacity and data transfer rate. This cause the degradation of track-following performance by increasing the disturbance of the rotary system. In this paper, we discussed on a DOB structure that efficiently attenuate the disturbance without effecting the overall feedback loop characteristics on CLV type ODD which uses a higher and broader range of rotational speed. DOB structure uses two band pass filter. We analyzed the track-following performance sensitivity on rotational frequency variance and gain changes. This analysis is done on a computer simulation environment and actual ODD product.

  • PDF

A Design of Voltage-controlled frequency Tunable Integrator (전압조절 주파수 가변 적분기 설계)

  • 이근호;이종인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.891-896
    • /
    • 2002
  • In this paper, a new voltage-controlled tunable integrator for low-voltage applications is proposed. The proposed active element is composed of the CMOS complementary cascode circuit which can extend transconductance of an element. Therefore, the unity gain frequency which is determined transcon-ductance is increased than that of the conventional element. And then these results are verified by the $0.25{\mu}m$ CMOS n-well parameter HSPICE simulation. As a result, the gain and the unity gain frequency are 42dB and 200MHz respectively in the element on 2V supply voltage. And power dissipation of the designed circuit is 0.32mW.

A Study of Korean Non-linear Fitting Formula based on NAL-NL1 for Digital Hearing Aids (디지털 보청기에서의 NAL-NL1 기반 한국형 비선형 fitting formula 연구)

  • Kim, H.M.;Lee, S.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • In this study, we suggest Korean nonlinear fitting formula (KNFF) to maximize speech intelligibility for digital hearing aids based on NAL-NL1 (NAL-nonlinear, version 1). KNFF was derived from the same procedure which is used for deriving NAL-NL1. KNFF consider the long-term average speech spectrum of Korean instead of English because the frequency characteristic of Korean is different from that of English. New insertion gains of KNFF were derived using the SII (speech intelligibility index) program provided by ANSI. In addition, the insertion gains were modified to maximize the intelligibility of high frequency words. To verify effect of the new fitting gain, we performed speech discrimination test (SDT) and preference test using the hearing loss simulator from NOISH. In the SDT, a word set as test material consists of 50 1-syllable word generally used in hearing clinic. As a result of the test, in case of moderate hearing loss with severe loss on high frequency, the SDT scores of KNFF was more improved about 3.2% than NAL-NLl and about 6% in case of the sever hearing loss. Finally we have obtained the result that it was the effective way to increase gain of mid-high frequency bands and to decrease gain of low frequency bands in order to maximize speech intelligibility of Korean.

Modified TEM Horn for Enhanced Radiation Characteristics at Low Frequency

  • Kim, Jae Sik;Park, Hyeong Soon;Yoon, Young Joong;Ryu, Jiheon;Choi, Jin Soo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.74-78
    • /
    • 2014
  • This paper presents a modified TEM horn that improves radiation characteristics at a low frequency region. The proposed antenna consists of an asymmetric TEM (ATEM) horn and a loop structure with an elliptical shape. The bandwidth and gain at low frequency region can be enhanced by using the ATEM horn configuration and adding a loop structure with an elliptical shape to the ATEM horn. The bandwidth of the proposed antenna is from 2.14 to over 20 GHz, whereas that of the conventional TEM horn is from 2.7 to over 20 GHz, where the dimensions of both antennas are the same except for the thickness of the loop structure. The physical and electrical dimensions of the proposed antenna are $60mm{\times}62.5mm{\times}64mm$ ($width{\times}height{\times}length$) and $0.428{\lambda}_L{\times}0.445{\lambda}_L{\times}0.456{\lambda}_L$, where ${\lambda}_L$ corresponds to the lowest frequency of the bandwidth. The realized gain of the proposed antenna is improved by 0.802 dB on average at the low frequency region (2 to 8 GHz), where the maximum gain increase is 2.932 dB when compared to a conventional TEM horn.

Knock Control Using Cylinder Block Vibration Signals in a Spark-Ignition Engine (스파크 점화 기관의 실린더 블록 진동 신호를 이용한 노킹 제어)

  • 함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.186-194
    • /
    • 1997
  • The objective of this study is to develope knock control algorithms which can increase engine power without causing frequent knock occurrence. A four cylinder spark-ignition engine is used for the experiments to develop knock control algorithms which use block vibration signals. Knock occurrence is detected accurately by using knock threshold values which consider the difference of transmission path of each cylinder. Spark timing is controlled both simultaneously and individually. With the simultaneous control, torque gain is achieved by retarding the spark timing on knock occurrence in propotion to the knock intensity. The individual knock control algorithm results in higher torque gain than the simultaneous knock control algorithm. The knock occurrence frequency of the individual knock control algorithm is about twice the value of the simultaneous knock control algorithm results. Both control algorithms give similar torque gain of about 3% when they are optimized.

  • PDF

Design Method of a Circularly-Polarized Antenna Using Fabry-Perot Cavity Structure

  • Ju, Jeong-Ho;Kim, Dong-Ho;Lee, Wang-Joo;Choi, Jae-Ick
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.163-168
    • /
    • 2011
  • A Fabry-Perot cavity (FPC) antenna producing both high-gain and circularly-polarized (CP) behavior is proposed. To increase antenna gain and obtain CP characteristics, a superstrate composed of square patches with a pair of truncated corners is placed above the linearly polarized patch antenna with an approximately half-wavelength distance from the ground plane at the operating frequency. The proposed antenna has the advantages of high gain, a simple design, and an excellent boresight axial ratio over the operating frequency bandwidth. Moreover, used in an FPC antenna, the proposed superstrate converts a linear polarization produced by a patch antenna into a circular polarization. In addition, the cavity antenna produces left-hand circular-polarization and right-hand circular-polarization when a patch antenna inside the cavity generates x-direction and y-direction polarization, respectively. The measured and simulated results verify the performance of the antenna.

Super-High-Speed Lightwave Demodulation using the Nonlinearities of an Avalanche Photodiode

  • Park, Young-Kyu
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.273-278
    • /
    • 2002
  • Even though the modulating signal frequency of the light is too high to detect directly, the signal can be extracted by frequency conversion at the same time as the detection by means of the non-linearity of the APD. An analysis is presented for super-high-speed optical demodulation by an APD with electronic mixing. A normalized gain is defined to evaluate the performance of the frequency conversion demodulation. The nonlinear effect of the internal capacitance was included in the small signal circuit analysis. We showed theoretically and experimentally that the normalized gain is dependent on the down converted difference frequency component. In the experiment, the down converted different frequency outputs became larger than the directly detected original signal for the applied local signal of 20㏈m.

Design of a Dual mode Three-push Tripler Using Stacked FETs with Amplifier mode operation

  • Yoon, Hong-sun;Park, Youngcheol
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1088-1092
    • /
    • 2018
  • In this paper, we propose a dual-mode frequency tripler using push-push and stacked FET structures. The proposed circuit can operate either in frequency multiplier mode or in amplifier mode. In the frequency multiplier mode, push-push frequency multiplication is achieved by allowing input signals with particular phase shifts. In the amplifier mode, the device operates as a distributed amplifier to obtain high gain. Also both modes were designed using stacked FET structure. The designed circuit showed frequency tripled output power of 9.7 dBm at 2.4 GHz with the input at 800 MHz. On the other hand, in the amplifier mode, the device showed 8.9 dB of gain to generate 19.5 dBm at 800 MHz.

Improvement of Gain and Frequency Characteristics of the CMOS Low-voltage Current-mode Integrator (CMOS 저전압 전류모드 적분기의 이득 및 주파수 특성 개선)

  • Ryu, In-Ho;Song, Je-Ho;Bang, Jun-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3614-3621
    • /
    • 2009
  • In this paper, A CMOS low-voltage current mode integrator is designed. The designed current-mode integrator is based on linear cascode circuit that is newly proposed in this paper. When it is compared with gain(43.7dB) and unity gain frequency(15.2MHz) of the typical current-mirror type current-mode integrator, the proposed linear cascode current-mode integrator achieves high current gain(47.8dB) and unity gain frequency(27.8MHz). And a 5th Chebyshev current-mode filter with 7.03MHz cutoff frequency is designed. The designed all circuits are simulated by HSPICE using 1.8V-$0.18{\mu}m$ CMOS technology.