• Title/Summary/Keyword: Frequency domain design

Search Result 611, Processing Time 0.025 seconds

A Study on the Synthesis of Strong Ground Motion using Empirical Green Function (경험적 그린함수를 이용한 강지진동 합성에 관한 연구)

  • Kim, Jun-Kyoung;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.17-23
    • /
    • 2006
  • The research on strong ground motions became important recently due to more severe requirement of seismic design for the domestic buildings and structures. The empirical Green's function method, which uses similarities between small and large earthquakes, was applied to make synthetic ground motions. That method was applied to the 2 earthquakes which occurred sequently in time within narrow area in Japan. The strong ground motions for the virtual earthquake (magnitude 6.5) were synthesized using those observed from the magnitude 4.7 earthquake. Then, the synthesized ground motions (acceleration, velocity, and displacement) were compared to those observed from real earthquake (magnitude 6.5). The results showed that the general shapes of waveforms in time domain and the Fourier spectrum In frequency domain from synthesized ground motions (acceleration, velocity, and displacement) are similar to the observed strong ground motions within acceptable degree. The peak values of 3 kinds of synthesized strong ground motions in time domain are comparable between the synthesized and the real strong ground motions, especially only about 9% difference in acceleration peak value.

Dynamic Aeroelastic Characteristics of an All-Movable Canard with Oscillating Flap Used in UAV (플랩이 있는 무인기 전운동 카나드의 동적공탄성 특성)

  • Kim, Dong-Hyun;Koo, Kyo-Nam;Lee, In;Kim, Sung-Jun;Kim, Sung-Chan;Lee, Jung-Jin;Choi, Ik-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.56-63
    • /
    • 2004
  • In this study, dynamic aeroelastic analyses of the canard with oscillating flap are conducted considering the effect of aerodynamic compressibility. The canard model considered herein is an all-movable type with a pitching axis on a canard-rotor-wing aircraft which was considered as one of the major UAV candidates under developing in Korea. The equivalent structural model is constructed based on the initial design data by the Korea smart UAV development center. Both the frequency and the time-domain aeroelastic analyses have been applied to practically conduct parametric studies on the effects of equivalent torsional stiffness. In the case of all-movable control surface with oscillating flap, the equivalent rotational stiffness of the pitch axes are important design parameters. The parametric results for the aeroelastic instability are practically presented.

Attitude Control using Quantitative Feedback Theory of a Quad-Rotor Vehicle with Plant Parametric Uncertainty (플랜트 파라미터의 불확실성을 포함한 4-회전익(Quad-Rotor) 비행체의 정량적 궤환 이론을 이용한 자세 제어)

  • Lee, ByungSeok;Heo, Moon-Beom;Lee, Joon Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.243-253
    • /
    • 2014
  • This paper deals with the Quantitative Feedback Thoery(QFT) guaranteeing robustness in spite of the plant parametric uncertainty. In the frequency domain, the QFT guarantees the robustness of the design specification on the uncertainty of plant parameters and disturbance. In order to use the QFT, a selected plant is a Quad Rotor Vehicle(QRV) which has excellent maneuverability and possibility of vertical take-off and landing like the helicopter. And attitude control is examined the possibility satisfied the requirement specification under the setting parametric uncertainty of motors driving 4-blades. Additionally, in an attitude control, the pre-filter considering parameter range and operating range of a QRV was used. For these purpose, in this paper, by using QFTCT, that is the QFT Control Toolbox designing the controller in MATLAB by the QFT, each design phases are introduced.

The Design of the Motor Bracket for Reduction of Structure- Borne Noise in Package Air-Conditioner (에어컨의 구조 소음 저감을 위한 실내기 모터 브라켓의 설계)

  • Sim Hyoun-Jin;Lee Sung-Jin;Kang Tae-Ho;Lee Jung-Yoon;Oh Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.202-209
    • /
    • 2006
  • As the economic power is improved and the customer's demand is hard to please, the noise and vibration is the most important yardstick that can determine the quality of the product. Especially, as the airconditioner's demand increase suddenly, the product of quality and the noise is becoming a decisive factor of determining whether purchase the product or not. Therefore, every manufactory is investing a lot of money and research to cut down the unpleasantness induced from noise and vibration. And they are emphasizing their product's difference by advertising a silence very actively. With these reason, the demand of a silent indoor air-conditioner is the essential research filed when the product is develop(:d. In this study, the noise and vibration is visualized in the space and frequency domain by using experimental methods such as operational deflection shape (ODS), modal testing and sound intensity. Also the location of noise source and its characteristic is analyzed in an acoustical point of view to reduce the structure borne noise that come from the fan motor, and the pertinent control method is suggested. Furthermore, the most suitable shape of the motor bracket is suggested by applying FEM and DOE (Design of experiments) in the noise and vibration point a view.

Comparison of Lateral Pile Behavior under Static and Dynamic Loading by Centrifuge Tests (원심모형 실험을 이용한 지반-말뚝 상호작용의 정적 및 동적 거동 평가)

  • Yoo, Min-Taek;Kwon, Sun-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.51-58
    • /
    • 2018
  • In this study a series of centrifuge tests were carried out in dry sand to analyze the comparison of lateral pile behavior for static loading and dynamic loading condition. In case of static loading condition, the lateral displacement was applied up to 50% of pile diameter by deflection control method. And the input sine wave of 0.1 g~0.4 g amplitude and 1 Hz frequency was applied at the base of the soil box using shaking table for dynamic loading condition. From comparison of experimental static p-y curve obtained from static loading tests with API p-y curves, API p-y curves can predict well within 20% error the ultimate subgrade reaction force of static loading condition. The ultimate subgrade reaction force of experimental dynamic p-y curve is 5 times larger than that of API p-y curves and experimental static p-y curves. Therefore, pseudo-static analysis applied to existing p-y curve for seismic design could greatly underestimate the soil resistance at non-linear domain and cause overly conservative design.

Design of PID Controller for Magnetic Levitation RGV Using Genetic Algorithm Based on Clonal Selection (클론선택기반 유전자 알고리즘을 이용한 자기부상 RGV의 PID 제어기 설계)

  • Cho, Jae-Hoon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.239-245
    • /
    • 2012
  • This paper proposes a novel optimum design method for the PID controller of magnetic levitation-based Rail-Guided Vehicle(RGV) by a genetic algorithm using clone selection method and a new performance index function with performances of both time and frequency domain. Generally, since an attraction type levitation system is intrinsically unstable and requires a delicate controller that is designed considering overshoot and settling time, it is difficult to completely satisfy the desired performance through the methods designed by conventional performance indexes. In the paper, the conventional performance indexes are analyzed and then a new performance index for Maglev-based RGV is proposed. Also, an advanced genetic algorithm which is designed using clonal selection algorithm for performance improvement is proposed. To verify the proposed algorithm and the performance index, we compare the proposed method with a simple genetic algorithm and particle swarm optimization. The simulation results show that the proposed method is more effective than conventional optimization methods.

Delay and Doppler Profiler based Channel Transfer Function Estimation for 2×2 MIMO Receivers in 5G System Targeting a 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.8-16
    • /
    • 2023
  • In Japan, high-speed ground transportation service using linear motors at speeds of 500 km/h is scheduled to begin in 2027. To accommodate 5G services in trains, a subcarrier spacing frequency of 30 kHz will be used instead of the typical 15 kHz subcarrier spacing to mitigate Doppler effects in such high-speed transport. Furthermore, to increase the cell size of the 5G mobile system, multiple base station antennas will transmit identical downlink (DL) signals to form an expanded cell size along the train rails. In this situation, the forward and backward antenna signals are Doppler-shifted in opposite directions, respectively, so the receiver in the train may suffer from estimating the exact Channel Transfer Function (CTF) for demodulation. In a previously published paper, we proposed a channel estimator based on Delay and Doppler Profiler (DDP) in a 5G SISO (Single Input Single Output) environment and successfully implemented it in a signal processing simulation system. In this paper, we extend it to 2×2 MIMO (Multiple Input Multiple Output) with spatial multiplexing environment and confirm that the delay and DDP based channel estimator is also effective in 2×2 MIMO environment. Its simulation performance is compared with that of a conventional time-domain linear interpolation estimator. The simulation results show that in a 2×2 MIMO environment, the conventional channel estimator can barely achieve QPSK modulation at speeds below 100 km/h and has poor CNR performance versus SISO. The performance degradation of CNR against DDP SISO is only 6dB to 7dB. And even under severe channel conditions such as 500km/h and 8-path inverse Doppler shift environment, the error rate can be reduced by combining the error with LDPC to reduce the error rate and improve the performance in 2×2 MIMO. QPSK modulation scheme in 2×2 MIMO can be used under severe channel conditions such as 500 km/h and 8-path inverse Doppler shift environment.

Effect of the Nonlinearity of the Soft Soil on the Elastic and Inelastic Seismic Response Spectra (연약지반의 비선형성이 탄성 및 비탄성 지진응답스펙트럼에 미치는 영향)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.11-18
    • /
    • 2005
  • Inelastic seismic analysis is necessary for the seismic design due to the nonlinear behavior of a structure-soil system, and the importance of the performance based design considering the soil-structure interaction is recognized for the reasonable seismic design. In this study, elastic and inelastic seismic response analyses of a single degree of freedom system on the soft soil layer were peformed considering the nonlinearity of the soil for the 11 weak or moderate, and 5 strong earthquakes scaled to the nominal peak acceleration of 0.075g, 0.15g, 0.2g and 0.3g. Seismic response analyses for the structure-soil system were peformed in one step applying the earthquake motions to the bedrock In the frequency domain, using a pseudo 3-D dynamic analysis software. Study results indicate that it is necessary to consider the nonlinear soil-structure interaction effects and to perform the performance based seismic design for the various soil layers rather than to follow the routine procedures specified in the seismic design codes. Nonlinearity of the soft soil excited with the weak earthquakes also affected significantly to the elastic and inelastic responses due to the nonlinear soil amplification of the earthquake motions, and it was pronounced especially for the elastic ones.

Design, Analysis, and Equivalent Circuit Modeling of Dual Band PIFA Using a Stub for Performance Enhancement

  • Yousaf, Jawad;Jung, Hojin;Kim, Kwangho;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.169-181
    • /
    • 2016
  • This work presents a new method for enhancing the performance of a dual band Planer Inverted-F Antenna (PIFA) and its lumped equivalent circuit formulation. The performance of a PIFA in terms of return loss, bandwidth, gain, and efficiency is improved with the addition of the proposed open stub in the radiating element of the PIFA without disturbing the operating resonance frequencies of the antenna. In specific cases, various simulated and fabricated PIFA models illustrate that the return loss, bandwidth, gain, and efficiency values of antennas with longer optimum open stub lengths can be enhanced up to 4.6 dB, 17%, 1.8 dBi, and 12.4% respectively, when compared with models that do not have open stubs. The proposed open stub is small and does not interfere with the surrounding active modules; therefore, this method is extremely attractive from a practical implementation point of view. The second presented work is a simple procedure for the development of a lumped equivalent circuit model of a dual band PIFA using the rational approximation of its frequency domain response. In this method, the PIFA's measured frequency response is approximated to a rational function using a vector fitting technique and then electrical circuit parameters are extracted from it. The measured results show good agreement with the electrical circuit results. A correlation study between circuit elements and physical open stub lengths in various antenna models is also discussed in detail; this information could be useful for the enhancement of the performance of a PIFA as well as for its systematic design. The computed radiated power obtained using the electrical model is in agreement with the radiated power results obtained through the full wave electromagnetic simulations of the antenna models. The presented approach offers the advantage of saving computation time for full wave EM simulations. In addition, the electrical circuit depicting almost perfect characteristics for return loss and radiated power can be shared with antenna users without sharing the actual antenna structure in cases involving confidentiality limitations.

Buffeting Response Correction Method based on Dynamic Properties of Existing Cable-Stayed Bridge (공용 사장교의 동적특성을 반영하는 버페팅 응답보정법)

  • Kim, Byeong Cheol;Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • According to design specifications for structural safety, a bridge in initial design step has been modelled to have larger self-weight, external loads and less stiffness than those of real one in service. Thereby measured buffeting responses of existing bridge show different distributions from those of the design model in design step. In order to obtain accurate buffeting responses of the in-site bridge, the analysis model needs to be modified by considering the measured natural frequencies. Until now, a Manual Tuning Method (MTM) has been widely used to obtain the Measurement-based Model(MBM) that has equal natural frequencies to the real bridge. However, since state variables can be selected randomly and its result is not apt to converge exact rapidly, MTM takes a lot of effort and elapsed time. This study presents Buffeting Response Correction Method (BRCM) to obtain more exact buffeting response above MTM. The BRCM is based on the idea the commonly used frequency domain buffeting analysis does not need all structural properties except mode shapes, natural frequencies and damping ratio. BRCM is used to improve each modal buffeting responses of the design model by substituting measured natural frequencies. The measured natural frequencies are determined from acceleration time-history in ordinary vibration of the real bridge. As illustrated examples, simple beam is applied to compare the results of BRCM with those of a assumed MBM by numerical simulation. Buffeting responses of BRCM are shown to be appropriate for those of in-site bridge and the difference is less than 3% between the responses of BRCM and MTM. Therefore, BRCM can calculate easily and conveniently the buffeting responses and improve effectively maintenance and management of in-site bridge than MTM.