DOI QR코드

DOI QR Code

Attitude Control using Quantitative Feedback Theory of a Quad-Rotor Vehicle with Plant Parametric Uncertainty

플랜트 파라미터의 불확실성을 포함한 4-회전익(Quad-Rotor) 비행체의 정량적 궤환 이론을 이용한 자세 제어

  • Received : 2013.11.18
  • Accepted : 2014.02.28
  • Published : 2014.03.01

Abstract

This paper deals with the Quantitative Feedback Thoery(QFT) guaranteeing robustness in spite of the plant parametric uncertainty. In the frequency domain, the QFT guarantees the robustness of the design specification on the uncertainty of plant parameters and disturbance. In order to use the QFT, a selected plant is a Quad Rotor Vehicle(QRV) which has excellent maneuverability and possibility of vertical take-off and landing like the helicopter. And attitude control is examined the possibility satisfied the requirement specification under the setting parametric uncertainty of motors driving 4-blades. Additionally, in an attitude control, the pre-filter considering parameter range and operating range of a QRV was used. For these purpose, in this paper, by using QFTCT, that is the QFT Control Toolbox designing the controller in MATLAB by the QFT, each design phases are introduced.

본 논문은 플랜트 파라미터의 불확실성에도 불구하고 강인성을 보장하는 정량적 궤환 이론에 대해 다루고 있다. 정량적 궤환 이론은 플랜트의 파라미터와 외란의 불확실성에 대해 주파수 영역에서 설계 사양의 강인성을 보장한다. 정량적 궤환 이론을 이용하기 위해 선정한 플랜트는 기동성이 뛰어나며 헬리콥터와 같이 수직 이착륙이 가능한 4-회전익 비행체를 이용하였으며, 4개의 블레이드를 구동하는 모터의 파라미터 불확실성을 설정하여 요구사양에 맞는 자세 제어가 가능함을 실험하였다. 또한, 자세 제어에는 4-회전익 비행체의 파라미터 변동 범위와 동작 범위를 고려한 전필터를 사용하였다. 이를 위해 MATLAB에서 정량적 궤환 이론에 의해 제어기를 설계할 수 있는 QFT control toolbox인 QFTCT를 사용하여 각 설계 단계에 대해 소개하고 있다.

Keywords

References

  1. I. M. Horowitz, 1963, Synthesis of feedback systems, Academic Press, New York
  2. I. M. Horowitz, 1982, "Quantitative feedback theory", Proc. of IEE, Vol. 129, No. 6, pp.215-226. https://doi.org/10.1049/ip-d.1982.0050
  3. S.-F. Wu, W. Wei and M.J. Grimble, 2004, "Robust MIMO control-system design using eigenstructure assignment and QFT", Proc. of IEE, Vol. 11, No. 2, pp.198-209.
  4. Houpis C.H., and Rasmussen, S.J., 1999, Quantitative feedback theory : fundamentals and applications, Marcel Dekker, Inc., New York, pp.14-91.
  5. Mario Garcia-Sanz, C. H. Houpis, 2012, Wind Energy Systems : Control Engineering Design(Appendix F : QFT Control Toolbox User's Guide), CRC Press
  6. J. M. Diaz, S. Dormido, and J. Aranda, 2005, "QFT Robust Control Design by Interactive Approach", Proc. of IEEE Conference on Decision and Control, pp.1301-1306.
  7. Ju-Sik Kim, Sang-Hyuk Lee, 2003, "A Design of PID Controller Using Loop Shaping Method of QFT", Trans. of the Korean Institute of Electrical Engineers (in Korean), Vol. 52, No. 7, pp.379-384.
  8. R. Munoz-Mansilla, J. Aranda, J.M. Diaz, D. Chaos, 2010, Robust control for high-speed crafts using QFT and eigenstructure assignment, IET Control Theory Appl., Vol. 4, Iss. 7, pp.1265-1276. https://doi.org/10.1049/iet-cta.2009.0152
  9. Shi Zhen, Wang Fei, Wang Xiu-zhi, 2011, "Design of missile lateral channel controller based on QFT", IEEE Conference on Computational and Information Sciences. pp.917-920.
  10. Min-Soo Kim, Seung-Whan Lee, Man-Soo Yun, and Chan-Soo Chung, 2003, "Design of the Flight Control Systems using the MIMO Quantitative Feedback Theory", Conference of the Korean Institute of Electrical Engineers (in Korean), pp.2005-2007.
  11. ByungSeok Lee, 2009, Modeling and Control of a Quad Rotor Vehicle, Master's Thesis(the University Of Seoul), pp.1-50.
  12. ByungSeok Lee, Moon-Beom Heo, Joon Hwa Lee, 2012, "Attitude Control of a Quad Rotor Vehicle using Quantitative Feedback Theory", 2012 KSAS Fall Conference(in Korean), pp.661-666.
  13. Li-Chun, Lai, Chi-Ching Yang, Chia-ju Wu, 2006, "Time-Optimal Control of a Hovering Quad-Rotor Helicopter", Journal of Intelligent Robotic Systems, pp.115-135.
  14. Gabriel M. Hoffmann, Haomiao Hung, Steven L. Waslander, Claire J. Tomlin, 2007, "Quadrotor Helicopter Flight Dynamics and Control : Theory and Experiment", AIAA Guidance, Navigation and Control Conference and Exhibit, pp.8-9.
  15. Phillip McKerrow, 2004, "Modelling the Draganflyer four-rotor helicopter", International Conference on robotics & Automation, pp.3598-3599.
  16. Gareth D. Padfield, 2007, Helicopter Flight Dynamics - 2nd ed., Blackwell publishing, pp. 25-29.
  17. Braja M. Das, Aslam Kassimali, Sedat Smai, 1994, Engineering Mechanics: Dynamics, Richard D. Irwin, Inc.
  18. Erginer Bora, Altug Erdinc, 2007, "Modeling and PD Control of a Quadrotor VTOL Vehicle", Proc. of IEEE Intelligent Vehicles symposium, pp.894-899.