• Title/Summary/Keyword: Frequency and visualization

Search Result 318, Processing Time 0.025 seconds

Identification and Reduction Method for Refrigerator Contraction and Expansion Noise (냉장고 수축팽창 소음원의 규명과 저감 방법)

  • Kim, Wonjin;Park, Seong Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.723-729
    • /
    • 2013
  • The contraction and expansion noise of a refrigerator are investigated, and some effective methods are proposed to reduce the level and occurrence frequency of noise. First, the noise of a refrigerator is measured to estimate the frequency spectrum and occurrence frequency of noise. Second, a sound visualization was conducted using an acoustic camera to determine the location of the noise source. From the results, it was observed that the internal part mainly producing noise was the third shelf in the freezer room. A method to estimate the acceleration on the location of the noise source is introduced to analyze the contraction and expansion noise precisely and accommodate experimental convenience. Noise reduction methods such as the replacement of the existing shelf with glass shelves, adoption of rail slides, and increase of roughness on the contact surface of the shelf are proposed and tested.

Sound Visualization Method using Joint Time-Frequency Analysis for Visual Machine Condition Monitoring

  • Seo, Jung-Hee;Park, Hung-Bog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.53-59
    • /
    • 2015
  • Noise from the surrounding environment, building structures and machine equipment have significant effects on daily life. Many solutions to this problem have been suggested by analyzing causes of noise generated from particular locations in general buildings or machine equipment and detecting defects of buildings or equipment. Therefore, this paper suggests a visualization technique of sounds by using the microphone array to measure sound sources from machines and perform the visual machine condition monitoring (VMCM). By analyzing sound signals and presenting effective sound visualization methods, it can be applied to identify machine's conditions and correct errors through real-time monitoring and visualization of noise generated from the plant machine equipment.

Covid 19 News Data Analysis and Visualization

  • Hur, Tai-Sung;Hwang, In-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.37-43
    • /
    • 2022
  • In this paper, we calculate the word frequency by date and region using news data related to COVID-19 distributed for about 8 months from December 2019 to July 2020, and visualized the correlation with the current state data of COVID-19 patients using the results. News data was collected from Big Kids, a news big data system operated by the Korea Press Promotion Foundation. The visualization system proposed in this paper shows the news frequency of the selected region compared to the overall region, the key keyword of the selected region, the region of the main keyword, and the date change of the selected region. Through this visualization, the main keywords and trends of COVID-19 confirmed and infected people can be identified for previous events.

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.490-495
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency-domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, two sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array show the most accurate determination of multiple sources' positions.

  • PDF

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.907-914
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, several sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array shows the most accurate determination of multiple sources' positions.

Mixing in a Microchannel by using Induced-charge Electro-osmosis (마이크로 채널 내 유도-전하 전기삼투에 의한 혼합)

  • Jeon, Young-Hun;Heo, Young-Gun;Jung, Won-Hyuk;Alapati, Suresh;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents an experimental study on the performance of a micro-mixer using AC electro-osmotic flow. The microchannel is made of PDMS for the side and top walls and glass patterned with ITO for the bottom wall. We first investigated the effect of the applied potential as well as the frequency on the slip velocity. We have found that the slip velocity is roughly proportional to the applied voltage in line with the Helmholtz-Smoluchowski equation and there is an optimum frequency at which the slip velocity becomes maximized. To find the optimum parameters for mixing device we tested our device for various design parameters. It turned out that the best mixing effect is obtained approximately when the electrode angle is $30^{\circ}$, electrode width $200\;{\mu}m$, and the frequency of power supply 700 Hz.

Lock-on Characteristics of wake behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 공진특성)

  • Lee Jung Yeop;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.18-21
    • /
    • 2004
  • Lock-on characteristics of the flow around a circular cylinder performing a rotationally oscillation with a relatively high forcing frequency have been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), amplitude of oscillation $(\theta_A)$, and frequency ratio $F_R=f_f\;/\;f_n$, where $f_f$ is the forcing frequency and if is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14\times10^3,\;\pi/15\leq\theta_A\leq\pi/3$, and $F_R=1.0$. The effects of this active control technique on the lock-on flow regime of the cylinder wake were evaluated through wake velocity measurements and spectral analysis of hot-wire signals. The rotary oscillation modified the flow structure of near wake significantly. The lock-on phenomenon was found to occur in the range of frequency encompassing the natural vortex shedding frequency. In addition, when the amplitude of oscillation is less than a certain value, the lock-on phenomenon was occurred only at $F_R=1.0$. The lock-on range expanded and vortex formation length decreased as the amplitude of oscillation increases. The rotary oscillation generated small-scale vortex structure just near the cylinder surface.

  • PDF

The Measurement of the Resonance Frequency of Transducer by Ultrasonic Visualization (초음파의 가시화에 의한 진동자의 공진주파수 측정에 관한 연구)

  • Lee, B.S.;Han, E.K.;Song, C.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.14-23
    • /
    • 1993
  • A method to measure the resonance frequency of the ultrasonic transducer which is adhered to the specimen by the ultrasonic visualization is tried. The result shows that the resonance frequency of the transducer adhered to the specimen is lower than the nominal resonance frequency of the transducer in itself and the greater the degree of deviation. It is verified that its cause is the resonance of Al-plate for protecting the transducer by the theoretical analysis.

  • PDF

English Bible Text Visualization Using Word Clouds and Dynamic Graphics Technology (단어 구름과 동적 그래픽스 기법을 이용한 영어성경 텍스트 시각화)

  • Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.373-386
    • /
    • 2014
  • A word cloud is a visualization of word frequency in a given text. The importance of each word is shown in font size or color. This plot is useful for quickly perceiving the most prominent words and for locating a word alphabetically to determine its relative prominence. With dynamic graphics, we can find the changing pattern of prominent words and their frequencies according to the changing selection of chapters in a given text. We can define the word frequency matrix. In this matrix, rows are chapters in text and columns are ranks corresponding to word frequency about the words in the text. We can draw the word frequency matrix plot with this matrix. Dynamic graphic can indicate the changing pattern of the word frequency matrix according to the changing selection of the range of ranks of words. We execute an English Bible text visualization using word clouds and dynamic graphics technology.

Visualizing Large Two-way Crosstabs by PLS Method (PLS 방법에 의한 "큰" 2원 교차표의 시각화)

  • Lee, Yong-Goo;Choi, Youn-Im
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.421-428
    • /
    • 2009
  • On the visualization of categorical data, if the number of categories is small, we can consider Hayashi Quantification Method 3 for visualization of the categories of the variables. But it is known that the method is unstable because it quantifies more significantly for the small frequency categories rather than large frequency categories. The purpose of this research is to propose the visualization of large two-way crosstabulation data by PLS methods for checking the relationship between the categories of row and column variables. In this research, we utilize the PLS visualization methods (Huh et al., 2007) that is proposed for visualization of the qualitative data to visualize the categories of the large categorical data. We also compared both methods by applying them to real data, and studied the results from PLS visualization method on the real categorized data with many categories.