• Title/Summary/Keyword: Frequency Response Model

Search Result 1,419, Processing Time 0.025 seconds

FRF Analysis of a Vehicle Passing the Bump Barrier (둔턱 진행 차량의 주파수응답 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.151-157
    • /
    • 2022
  • The purpose of this study was to investigate the frequency characteristics of forced vibration considering the vehicle progress. And the vibration characteristics in frequency domain that occur, when vehicle passes the bump, were analyzed. The responses such as displacement, velocity and acceleration were obtained through numerical analysis, and FFT processing was performed to analyze the frequency response function(FRF) characteristics. In particular, the location of vehicle eigenmodes and external excitation modes was clearly shown and analyzed. In the forced vibration model by external force, the behavior of the eigenmode in power spectrum and real and imaginary parts were also analyzed. The mode characteristics were also analyzed in each FRF. It was approximated by assuming total excitation force by considering the exciting frequency using impulse and sine wave forces, which can give the amplitude and frequencies. The response characteristics of forced oscillations having different mass, damping and stiffness have been systematically discussed.

Scaling laws for vibration response of anti-symmetrically laminated plates

  • Singhatanadgid, Pairod;Ungbhakorn, Variddhi
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.345-364
    • /
    • 2002
  • The scaling laws for vibration response of anti-symmetrically laminated plates are derived by applying the similitude transformation to the governing differential equations directly. With this approach, a closed-form solution of the governing equations is not required. This is a significant advantage over the method employed by other researchers where similitude transformation is applied to the closed-form solution. The scaling laws are tested by comparing the similitude fundamental frequencies to the theoretical fundamental frequencies determined from the available closed-form solutions. In case of complete similitude, similitude solutions from the scaling laws exactly agree with the theoretical solutions. Sometimes, it may not be feasible to select the model which obeys the similarity requirement completely, therefore partial similitude is theoretically investigated and approximate scaling laws are recommended. The distorted models in stacking sequences and laminated material properties demonstrate reasonable accuracy. On the contrary, a model with distortion in fiber angle is not recommended. The derived scaling laws are very useful to determine the vibration response of complex prototypes by performing the experiment on a model with required similarities.

Bifurcation Analysis of a Non-linear Hysteretic Oscillating System (비선형 히스테리시스 진동시스템의 분기해석)

  • 송덕근;최진권;장서일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.289-294
    • /
    • 2001
  • Three kinds of viscoelastic damper model, which has a non-linear spring as an element is studied analytically and numerically. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by a non-linear constitutive equation and an additional equation of motion. Harmonic balance method is applied to get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurrences of such non-linear phenomena.

  • PDF

Bifurcation Analysis of a Non-linear Hysteretic Oscillating System (비선형 히스테리시스 진동시스템의 분기해석)

  • 장서일;송덕근;최진권
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.57-64
    • /
    • 2002
  • Three kinds of viscoelastic damper model, which has a non-linear spring as an element is studied analytically and numerically The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by a non-linear constitutive equation and an additional equation of motion. Harmonic balance method is applied to get analytical solutions of the system. The frequency-response curves sallow that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurrences of such non-linear Phenomena.

Dynamic Response Analysis of Open Section Structures with Warping Restraint Conditions and Impact Load Durations

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.159-164
    • /
    • 2020
  • The response analysis of frame structure with open section beams considering warping conditions and short duration load have been performed. When a beam of frame structure is subjected under torsional moment, the cross section will deform a warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. Because of impact or blast loads, the wave propagation effects become increasingly important as load duration decreases. This paper presents that a warping restraint in finite element model effects the behavior of beam deformation, dynamic mode shape and response analysis. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame. A method to estimate the number of normal modes that are important is discussed.

The Influence of Coupling Coefficient between Wayside Transmitter and On-board Receiver upon Operation Characteristics of the ATS System

  • Kim, Min-Seok;Kim, Min-Kyu;Lee, Sang-Hyeok;Lee, Jong-Woo
    • International Journal of Railway
    • /
    • v.4 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • The ATS system is used to provide wayside signaling. Currently, the oscillation frequency is set at 78[kHz] in the normal state. As the on-board receiver crosses over the wayside transmitter, the oscillation frequency is changed by capacitors of the wayside transmitter in a manner dependent on the train speed. As the oscillation frequency is changed, the waveform is modified in the wayside transmitter as well as in the on-board receiver. When there are other signal systems such as a ATO system present near the wayside transmitter, frequency interference occurs. This phenomenon arises since other signals or communication frequencies present will be included in the waveform. Trains often stop due to these other frequencies included in the waveform. In this paper, a model of the interaction between the wayside transmitter and on-board receiver is suggested and frequency response in the wayside transmitter and on-board receiver in the presence of the other signals are estimated by the coupling coefficient. Also, the coupling coefficients are estimated, and the optimal value is proposed.

Hybridal Analysis of High-Frequency Combustion Instability with Pressure-Coupled Combustion Response Model (압력섭동과 연관된 연소응답모델에 기초한 고주파 연소불안정의 이론-수치적 고찰)

  • 윤웅섭;이길용
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.253-257
    • /
    • 2003
  • Theoretical-numerical analysis of wave instability is conducted with parametric response function model. Fluctuating instantaneous mass evaporation rate functionally coupled with pressure perturbations with phase lag is assumed to examine the validity of the method. With sufficiently large amplitude and less phase lag to perturbation, combustion response is resonant to pressure waves, unstable waves are amplified, and the system is driven to instability. Magnitude of response is a crucial instability parameter in the determination of a stability margins and makes a critical change of balancing conditions between the amplifying and damping acoustic energies. In the phase regime the unstable waves are amplified, whereas, the acoustic waves are attenuated in the out-of-phase regime. In the intermediate regime, no distinct tendency of unstable waves was determined.

  • PDF

Seismic Response Evaluation of NPP Structures Considering Different Numerical Models and Frequency Contents of Earthquakes (다양한 수치해석 모델과 지진 주파수 성분을 고려한 원전구조물의 지진 응답 평가)

  • Thusa, Bidhek;Nguyen, Duy-Duan;Park, Hyosang;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the application of various numerical models and frequency contents of earthquakes on the performances of the reactor containment building (RCB) in a nuclear power plant (NPP) equipped with an advanced power reactor 1400. Two kinds of numerical models are developed to perform time-history analyses: a lumped-mass stick model (LMSM) and a full three-dimensional finite element model (3D FEM). The LMSM is constructed in SAP2000 using conventional beam elements with concentrated masses, whereas the 3D FEM is built in ANSYS using solid elements. Two groups of ground motions considering low- and high-frequency contents are applied in time-history analyses. The low-frequency motions are created by matching their response spectra with the Nuclear Regulatory Commission 1.60 design spectrum, whereas the high-frequency motions are artificially generated with a high-frequency range from 10Hz to 100Hz. Seismic responses are measured in terms of floor response spectra (FRS) at the various elevations of the RCB. The numerical results show that the FRS of the structure under low-frequency motions for two numerical models are highly matched. However, under high-frequency motions, the FRS obtained by the LMSM at a high natural frequency range are significantly different from those of the 3D FEM, and the largest difference is found at the lower elevation of the RCB. By assuming that the 3D FEM approximates responses of the structure accurately, it can be concluded that the LMSM produces a moderate discrepancy at the high-frequency range of the FRS of the RCB.

Response surface methodology based multi-objective optimization of tuned mass damper for jacket supported offshore wind turbine

  • Rahman, Mohammad S.;Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.303-315
    • /
    • 2017
  • This paper presents a review on getting a Weighted Multi-Objective Optimization (WMO) of Tuned Mass Damper (TMD) parameters based on Response Surface Methodology (RSM) coupled central composite design and Weighted Desirability Function (WDF) to attenuate the earthquake vibration of a jacket supported Offshore Wind Turbine (OWT). To optimize the parameters (stiffness and damping coefficient) of damper, the frequency ratio and damping ratio were considered as a design variable and the top displacement and frequency response were considered as objective functions. The optimization has been carried out under only El Centro earthquake results and after obtained the optimal parameters, more two earthquakes (California and Northridge) has been performed to investigate the performance of optimal damper. The obtained results also compared with the different conventional TMD's designed by Den Hartog's, Sadek et al.'s and Warburton's method. From the results, it was found that the optimal TMD based on RSM shows better response than the conventional damper. It is concluded that the proposed response model offers an efficient approach regarding the TMD optimization.

A Study on the Vibration Characteristics of the Reduced Structure Model of Wind Turbine Generator (풍력발전기 축소 구조 모델의 진동특성 연구)

  • Park, Moo-Yeol;Eun, Sung-Yong;Kim, Seock-Hyun
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.83-87
    • /
    • 2004
  • A reduced structure model of a wind turbine generator is designed and manufactured. Mode data are obtained by modal testing and analytical method. Vibration response is measured and investigated under various speed condition by using a waterfall plot. Possibility of severe resonance is observed and the mechanism is explained by using the mode data. Simplified theoretical model gives the 1st resonance frequency of wind turbine structure model. The theoretical model can be applied in the design stage of the wind turbine structure to avoid the severe resonance problem.

  • PDF