• Title/Summary/Keyword: Frequency Domain Reflectometry

Search Result 98, Processing Time 0.031 seconds

Characterizing the strain transfer on the sensing cable-soil interface based on triaxial testing

  • Wu, Guan-Zhong;Zhang, Dan;Shan, Tai-Song;Shi, Bin;Fang, Yuan-Jiang;Ren, Kang
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.63-74
    • /
    • 2022
  • The deformation coordination between a rock/soil mass and an optical sensing cable is an important issue for accurate deformation monitoring. A stress-controlled triaxial apparatus was retrofitted by introducing an optical fiber into the soil specimen. High spatial resolution optical frequency domain reflectometry (OFDR) was used for monitoring the strain distribution along the axial direction of the specimen. The results were compared with those measured by a displacement meter. The strain measured by the optical sensing cable has a good linear relationship with the strain calculated by the displacement meter for different confining pressures, which indicates that distributed optical fiber sensing technology is feasible for soil deformation monitoring. The performance of deformation coordination between the sensing cable and the soil during unloading is higher than that during loading based on the strain transfer coefficients. Three hypothetical strain distributions of the triaxial specimen are proposed, based on which theoretical models of the strain transfer coefficients are established. It appears that the parabolic distribution of specimen strain should be more reasonable by comparison. Nevertheless, the strain transfer coefficients obtained by the theoretical models are higher than the measured coefficients. On this basis, a strain transfer model considering slippage at the interface of the sensing cable and the soil is discussed.

Development of an Integrated Monitoring System for the Low and Intermediate Level Radioactive Waste Near-surface Disposal Facility (방사성폐기물 표층처분시설 통합 모니터링 시스템 개발)

  • Se-Ho Choi;HyunGoo Kang;MiJin Kwon;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • In this study, the function and purpose of the disposal cover, which is an engineering barrier installed to isolate the disposal vault of the near-surface disposal facility for radioactive waste from natural/man-made intrusion, and the design details of the demonstration facility for performance verification were described. The Demonstration facility was designed in a partially divided form to secure the efficiency of measurement while being the same as the actual size of the surface disposal facility to be built in the Intermediate & low-level radioactive waste disposal site of the Korea Radioactive Waste Agency (KORAD). The instruments used for measurement consist of a multi-point thermometer, FDR (Frequency Domain Reflectometry) sensor, inclinometer, acoustic sensor, flow meter, and meteorological observer. It is used as input data for the monitoring system. The 3D monitoring system was composed of 5 layers using the e-government standard framework, and was developed based on 4 components: screen, control module, service module, and DBIO(DataBase Input Output) module, and connected them to system operation. The monitoring system can provide real-time information on physical changes in the demonstration facility through the collection, analysis, storage, and visualization processes.

Properties of Moisture Distribution on Bentonite by the Responses of Complex Dielectric Constant (복소유전율상수 반응에 의한 벤토나이트 수분분포 특성 연구)

  • Kim Man-li;Jeong Gyo-Cheo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.281-288
    • /
    • 2005
  • To evaluate a property of moisture distribution and volumetric water content on bentonite media the responses of complex dielectric constant were used which are measured by Frequency Domain Reflectometry with Vector Network Analyzer (FDR-V) system. The bentonite is widely used a barrier liner system in the waste disposal site, recently. In case of barrier liner system, generally, the coefficient of permeability should have to less than 10-7cm/sec. According to the results, the complex dielectric constants are increasing with increase the volumetric water content and temperature together. Also the variation of complex dielectric constant due to temperature gradient is confirmed that the moisture movements are increasing with the variations of temperature from high range to low range, which is represented the property of moisture distribution in the bentonite.

A study on measurement of physical parameters using electromagnetic wave of the compacted saturated soil (고주파수 전자기파를 이용한 압밀 포화토 물성치 측정을 위한 연구)

  • Kim, Man-Il;Kim, Hyoung-Soo;Suk, Hee-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.354-361
    • /
    • 2005
  • Physical parameters such as porosity and effective porosity are important physical parameters that determine the transfer and movement of water and solutes in porous media. Various methods of determining these parameters have been developed, with varying degrees of accuracy and applicability. Most of the existing methods produce static results. They do not produce instantaneous and real time of porosity and effective porosity in a porous media. In this study, a new permittivity method called Frequency Domain Reflectometry with Vector analyzer (FDR-V) is proposed to determine the porosity and effective porosity of some sand samples in the laboratory. The advantage of the FDR-V method is that it instantaneously determines the temporal variation of dielectric constants of porous media. Then, the porosity and the effective porosity of porous media are computed using well established empirical equations. Results obtained from the FDR-V method compared favorably with results from other permittivity methods such as gravimetric, injection and replacement tests. The ratio of effective porosity to porosity was $85{\sim}92%$, when FDR-V was used. This value compared favourably with 90%, which has been usually quoted in previous studies. Considering the convenience and its applicability, the measurement system of FDR-V permittivity holds a great potential in porous media and contaminant transport studies.

  • PDF

Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data (고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정)

  • Shin, Yong-Hoon;Choi, Jin-Yong;Lee, Seung-Jae;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.

A Study on the Geotechnical Property caused by Contact Volume between Weathered Soils and Moisture Sensor for Application of Field Monitoring (현장 모니터링 적용을 위한 풍화토와 함수비센서의 접촉체적에 따른 지반물성 연구)

  • Kim, Man-Il;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.311-319
    • /
    • 2008
  • Evaluation of an amplitude domain reflectometry (ADR) type soil moisture sensor as ThetaProbe ML2x using the response of frequency impedance was performed in a variety of soil porous media such as Jumunjin standard sand, weathered granite soil at Sangju area, and weathered gneiss soil at Jangsu area. The tested soils were classified with a dried condition and a wetted condition for comparing with soil volumetric water content under different installed depths of the measurement sensor. In the results the part of measurement rod including one signal rod and three shield rod 6cm in length was found to decrease the variation of measurement output voltage with insert 5cm over into the soil porous media. The measurement output voltage was verified to more stable output voltage under weathered granite soils and weathered gneiss soils contained the fine grain materials such as clay and silt minerals than the gradual grain material like as the standard sands. Therefore, measurement values by soil moisture sensor can be offered the more stable values when an contact volume between soil porous media and measurement sensor increase.

Evaluation of Compaction Quality using High-resolution Terrain Factor and Soil Moisture (고해상 지형정보와 토양수분을 활용한 다짐도 평가)

  • Kim, Sung-Wook;Go, Daehong;Lee, Yeong-Jae;Choi, Eun-Kyeong;Kim, Jin-Young;Kim, Ji-Sun;Cho, Jin-Woo
    • Journal of Environmental Science International
    • /
    • v.31 no.10
    • /
    • pp.869-881
    • /
    • 2022
  • In this study, a field study was conducted to investigate the relationship between high-resolution remote images and the volumetric moisture, and the number of compaction. Changes in the shape of the surface and soil moisture content were observed and correlated with the number of compactions using roller equipment. As the compaction is repeated, the surface is flattened and the terrain curvature decreases and converges to zero. In particular, the tangential curvature changes as the number of compactions increase. Due to soil compaction, the vegetation index changed from a positive to a negative value, and most of the test site area was homogenized with a negative index. This suggests a decrease in porosity and an increase in volumetric water content associated with increasing soil compaction. Soil moisture, measured using a frequency domain reflectometry(FDR) sensor, tends to increase proportionately with the number of vibration compactions, but the correlation between the number of compactions and soil moisture is unclear. This study suggests that while it is necessary to consider the reproducibility of the experiments performed, the compaction quality of the soil can be evaluated using high-resolution terrain factors and soil moisture.

Application of ISMN method for quality control of soil moisture data (토양수분 측정자료의 품질관리를 위한 ISMN 방식 적용)

  • Shin, Hyung Jin;Lee, Jae Nam;Hwang, Seon Ah;Ok, Jung hun;Lee, Ki Won;Park, Chan Gi;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.254-254
    • /
    • 2022
  • 밭 용수관리 및 가뭄 대응을 위한 토양수분 실측자료의 품질관리가 필수적으로 수행되어야 한다. 토양수분 자료의 체계적인 유지관리를 위해 국제 토양수분 네트워크(International Soil Moisture Network; ISMN)가 설립되었고, 전세계 1,400여개 지점의 토양수분량 자료의 품질관리하고 있다. ISMN 품질관리 방식은 토양특성, 강우에 대한 반응, 토양온도, 시계열특성을 이용한다. 지표면 최상 토층에 저장되어있는 수분인 토양수분은 기후 예측, 홍수 예보, 농업가뭄평가, 수자원 관리, 온실가스 산정, 인프라 보전, 수인성 전염병 모델링 등 다양한 분야에 활용될 수 있다(Dorigo et al., 2011). 본 연구에서는 FDR(Frequency Domain Reflectometry) 기기를 이용한 토양수분 측정자료의 품질관리를 위해 ISMN에서 제시한 총6개의 단계별 품질관리 체계를 적용하였다. 단계는 1) 토양수분이 0 m3m-3보다 작은지, 2) 또는 0.6 m3m-3보다 큰지, 3) 토양수분값이 공극률보다 큰지, 4) 토양온도가 영하인지, 5) 토양수분이 강우 이벤트 없이 증가하는지, 그리고 5) 토양수분 시계열 자료에 spike 가 있는지 6) break나 plateau가 있는지를 검사하여 Quality Flag를 설정하였다. 이를 기반으로 토양수분 데이터 자동 프로그램을 개발하여 이상치를 보정하였다. 향후, ISMN의 Quality Flag (QF1-QF10)를 적용하여 모니터링 자료의 품질관리 자동 프로그램을 개발하고자 한다.

  • PDF

Construction and estimation of soil moisture site with FDR and COSMIC-ray (SM-FC) sensors for calibration/validation of satellite-based and COSMIC-ray soil moisture products in Sungkyunkwan university, South Korea (위성 토양수분 데이터 및 COSMIC-ray 데이터 보정/검증을 위한 성균관대학교 내 FDR 센서 토양수분 측정 연구(SM-FC) 및 데이터 분석)

  • Kim, Hyunglok;Sunwoo, Wooyeon;Kim, Seongkyun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.133-144
    • /
    • 2016
  • In this study, Frequency Domain Reflectometry (FDR) and COSMIC-ray soil moisture (SM) stations were installed at Sungkyunkwan University in Suwon, South Korea. To provide reliable information about SM, soil property test, time series analysis of measured soil moisture, and comparison of measured SM with satellite-based SM product are conducted. In 2014, six FDR stations were set up for obtaining SM. Each of the stations had four FDR sensors with soil depth from 5 cm to 40 cm at 5~10 cm different intervals. The result showed that study region had heterogeneous soil layer properties such as sand and loamy sand. The measured SM data showed strong coupling with precipitation. Furthermore, they had a high correlation coefficient and a low root mean square deviation (RMSD) as compared to the satellite-based SM products. After verifying the accuracy of the data in 2014, four FDR stations and one COSMIC-ray station were additionally installed to establish the Soil Moisture site with FDR and COSMIC-ray, called SM-FC. COSMIC-ray-based SM had a high correlation coefficient of 0.95 compared with mean SM of FDR stations. From these results, the SM-FC will give a valuable insight for researchers into investigate satellite- and model-based SM validation study in South Korea.

A Study for establishment of soil moisture station in mountain terrain (1): the representative analysis of soil moisture for construction of Cosmic-ray verification system (산악 지형에서의 토양수분 관측소 구축을 위한 연구(1): Cosmic-ray 검증시스템 구축을 위한 토양수분량 대표성 분석 연구)

  • Kim, Kiyoung;Jung, Sungwon;Lee, Yeongil
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.51-60
    • /
    • 2019
  • The major purpose of this study is to construct an in-situ soil moisture verification network employing Frequency Domain Reflectometry (FDR) sensors for Cosmic-ray soil moisture observation system operation as well as long-term field-scale soil moisture monitoring. The test bed of Cosmic-ray and FDR verification network system was established at the Sulma Catchment, in connection with the existing instrumentations for integrated data provision of various hydrologic variables. This test bed includes one Cosmic-ray Neutron Probe (CRNP) and ten FDR stations with four different measurement depths (10 cm, 20 cm, 30 cm, and 40 cm) at each station, and has been operating since July 2018. Furthermore, to assess the reliability of the in-situ verification network, the volumetric water content data measured by FDR sensors were compared to those calculated through the core sampling method. The evaluation results of FDR sensors- measured soil moisture against sampling method during the study period indicated a reasonable agreement, with average values of $bias=-0.03m^3/m^3$ and RMSE $0.03m^3/m^3$, revealing that this FDR network is adequate to provide long-term reliable field-scale soil moisture monitoring at Sulmacheon basin. In addition, soil moisture time series observed at all FDR stations during the study period generally respond well to the rainfall events; and at some locations, the characteristics of rainfall water intercepted by canopy were also identified. The Temporal Stability Analysis (TSA) was performed for all FDR stations located within the CRNP footprint at each measurement depth to determine the representative locations for field-average soil moisture at different soil profiles of the verification network. The TSA results showed that superior performances were obtained at FDR 5 for 10 cm depth, FDR 8 for 20 cm depth, FDR2 for 30 cm depth, and FDR1 for 40 cm depth, respectively; demonstrating that those aforementioned stations can be regarded as temporal stable locations to represent field mean soil moisture measurements at their corresponding measurement depths. Although the limit on study duration has been presented, the analysis results of this study can provide useful knowledge on soil moisture variability and stability at the test bed, as well as supporting the utilization of the Cosmic-ray observation system for long-term field-scale soil moisture monitoring.