• Title/Summary/Keyword: Freezing point

Search Result 208, Processing Time 0.024 seconds

Biochemical Adaptation to the Freezing Environment - the Biology of Fish Antifreeze Proteins

  • Li, Zhengjun;Li, n Qingsong;Low Woon-Kai;Miao Megan;Hew Choy L.
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.607-615
    • /
    • 2003
  • Many organisms are known to survive in icy environments. These include both over wintering terrestrial insects and plants as well the marine fish inhabiting high latitudes. The adaptation of these organisms is both a fascinating and important topic in biology. Marine teleosts in particular, can encounter ice-laden seawater that is approximately $1^{\circ}C$ colder than the colligative freezing point of their body fluids. These animals produce a unique group of proteins, the antifreeze proteins (AFPs) or antifreeze glycoproteins (AFGPs) that absorb the ice nuclei and prevent ice crystal growth. Presently, there are at least four different AFP types and one AFGP type that are isolated from a wide variety of fish. Despite their functional similarity, there is no apparent common protein homology or ice-binding motifs among these proteins, except that the surface-surface complementarity between the protein and ice are important for binding. The remarkable diversity of these proteins and their odd phylogenetic distribution would suggest that these proteins might have evolved recently in response to sea level glaciations just 1-2 million years ago in the northern hemisphere and 10-30 million years ago around Antarctica. Winter flounder, Pleuronectes americanus, has been used as a popular model to study the regulation of AFP gene expression. It has a built-in annual cycle of AFP expression controlled negatively by the growth hormone. The signal transduction pathways, transcription factors and promoter elements involved in this process have been studied in our laboratory and these studies will be presented.

Pore Structures and Mechanical Properties of Early Frost Damaged Concrete using Electric Arc Furnace Slag as Aggregate (초기동결 피해를 받은 전기로 산화 슬래그 혼입 콘크리트의 공극 구조 및 역학적 특성)

  • Lee, Won-Jun;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.68-77
    • /
    • 2020
  • The purpose of the paper is to evaluate the pore structure and mechanical properties of early frost damaged concrete using electric arc furnace slag as aggregate. From the results, when the concrete is exposed to frost damage at an early age, the peak point of pores 100 to 150 ㎛ in diameter were transferred into larger one. When the freezing duration is not exceeded 24 hours, it is possible that the pore distribution of under the 200 ㎛ is maintained and pore size of over 500 ㎛ is not formed, and, the freezing resistance of concrete using EFG could be improved. When BFS was mixed in concrete using EFG as coarse aggregate, the relative strength is higher than that of natural coarse aggregate. Meanwhile, the elastic modulus and resonance frequency did not change significantly due to the early frost damage as compared with the compressive strength. So, it is necessary to analyze the correlation between the experimental results in order to evaluate the performance degradation due to early frost damage.

Evaluation of Self-deicing Function of Snow-melting Asphalt (자체 용설 아스팔트 혼합물의 용빙특성 분석)

  • Kim, Kwang-Woo;Lee, Gi-Ho;Hong, Sang-Ki;Jin, Jo-Ill;Doh, Young-Soo
    • International Journal of Highway Engineering
    • /
    • v.5 no.2 s.16
    • /
    • pp.1-14
    • /
    • 2003
  • This study is a fundamental research for developing self-deicing function of snow-melting asphalt concrete for roadway pavement. The objective of this study is to develop technology of making self-snow-melting asphalt pavement and evaluate properties of the asphalt concrete containing deicers. Asphalt concrete with deicers and CRM was produced by dry process. The $\alpha$-deicer, CRM and F-deicer were used for sand asphalt mixtures of thin-layer pavement on the existing pavement. The $\alpha$-deicer, $\beta$-deicer, CRM A, CRM B and C were used for 13mm dense-graded mixtures on surface course. Penetration grade of 60-80 asphalt was used for asphalt mixtures. Marshall mix-design, indirect tensile strength, freezing and thawing test, analysis of extracted water were carried out to evaluate performance of self deicing function of asphalt mixtures. The study result showed that snow-melting asphalt mixtures had not only good mechanical characteristics and good snow-melting function, but also chemically safe in environmental point of view.

  • PDF

Preparation and Thermal Characteristics of Hexadecane/xGnP Shape-stabilized Phase Change Material for Thermal Storage Building Materials (축열건축자재 적용을 위한 Hexadecane/xGnP SSPCM 제조 및 열적특성)

  • Kim, Sug-Hwan;Jeong, Su-Gwang;Lim, Jae-Han;Kim, Su-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.73-78
    • /
    • 2013
  • Hexadecane and exfoliated graphite nanoplate (xGnP)composite was prepared as a shape-stabilized phase change material (SSPCM) in a vacuum to develope thermal energy storage. The Hexadecane as an organic phase change material (PCM) is very stable against phase separation of PCM and has a melting point at $18^{\circ}C$ that is under the thermally comfortable temperature range in buildings. The xGnP is a porous carbon nanotube material with high thermal conductivity. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR)were used to confirm the chemical and physical stability of Hexadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter(DSC) and Thermogravimetric analysis (TGA). The specific heat of Hexadecane/xGnPSSPCM was $10.0J/g{\cdot}K$ at $21.8^{\circ}C$. The melting temperature range of melting and freezing were found to be $16-25^{\circ}C$ and $17-12^{\circ}C$. At this time, the laten heats of melting and freezing were 96.4J/g and 94.8J/g. The Hexadecane was impregnated into xGnP as much about 48.8% of Hexadecane/xGnP SSPCM's mass fraction.

Strengthening Performance of RC Beams Exposed to Freezing and Thawing Cycles after Strengthening in Shear with CFRP Sheet (CFRP 쉬트로 전단보강후 동결융해에 노출된 철근콘크리트 보의 보강성능)

  • Yun, Hyun-Do;Kim, Sun-Woo;Kim, Yun-Su;Lee, Min-Jung;Seo, Soo-Yeon;Choi, Ki-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.161-164
    • /
    • 2008
  • In recent years, carbon fiber-reinforced polymer (CFRP) has been widely used for repairing and/or strengthening structural elements in concrete. Not enough test data, however, are available to predict the long-term performance of the repaired and improved structures exposed to weathering. The objective of this research is to study the effect of freeze-thaw cycling on the behavior of reinforced concrete (RC) beams strengthened in shear with carbon fiber sheet. Six small-scale RC beams (100mm${\times]$100mm${\times]$400mm) were strengthened with CFRP in shear, subjected to up to 400 cycles freeze-thawing from -17${\sim}4^{\circ}C$, and tested to failure in four-point bending. Test result, there was no significant damage to carbon fiber sheet strengthened concrete beams had been suffered 30 cycles of freeze-thawing, and more over 60 cycles of freezing-thawing brought about a reduction in resistance of only 25% of the initial level.

  • PDF

Analysis of In-situ Temperature Measurement at Gonjiam Cold Storage Cavern (곤지암 지하암반 저장고 온도계측 결과 분석)

  • Lee Gyu-Sang;Lee Chung-In
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.169-176
    • /
    • 2005
  • The decreasing pattern of underground temperature measured at 'Gonjiam cold storage cavern' during 7 years which was the first commercial scale underground food storage cavern in Korea was analyzed. The variation of energy consumption was discussed by comparing the consumed energy at the initial operation stage with that at later stage, when the temperature distribution reached a stabilized condition. The point to be considered at the design stage was also discussed by comparing the required refrigerator capacity at the initial operation stage with that at later stage. The extra energy to freeze the groundwater contained in pore space was discussed by analyzing the changing pattern of the rock temperature. The variation of measured rock temperature was compared with the estimated temperature using a numerical code, FLAC. The accuracy of the numerical estimation was discussed by comparing the heat flux measured by the operation time of the refrigerator with that estimated numerically.

Prognosis of Blade Icing of Rotorcraft Drones through Vibration Analysis (진동분석을 통한 회전익 드론의 블레이드 착빙 예지)

  • Seonwoo Lee;Jaeseok Do;Jangwook Hur
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Weather is one of the main causes of aircraft accidents, and among the phenomena caused by weather, icing is a phenomenon in which an ice layer is formed when an object exposed to an atmosphere below a freezing temperature collides with supercooled water droplets. If this phenomenon occurs in the rotor blades, it causes defects such as severe vibration in the airframe and eventually leads to loss of control and an accident. Therefore, it is necessary to foresee the icing situation so that it can ascend and descend at an altitude without a freezing point. In this study, vibration data in normal and faulty conditions was acquired, data features were extracted, and vibration was predicted through deep learning-based algorithms such as CNN, LSTM, CNN-LSTM, Transformer, and TCN, and performance was compared to evaluate blade icing. A method for minimizing operating loss is suggested.

Freeze Protection for Passive Solar Water Heating System (자연순환형 태양열온수기 동파방지기술)

  • Kim, Jong-Hyun;Hong, Hi-Ki;Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.327-333
    • /
    • 2011
  • In the present work, a new freeze protection method has been proposed for a natural circulation system of solar water heater. Though electrothermal wire is popularly used for the purpose, there are freezing troubles by wire cut-off and shortage of excessive electric power consumption. In the experimental device, hot water in storage tank was used to heat the outlet pipe from the tank if the pipe surface temperature falls lower than a set point. The cold water pipe to the storage tank was installed to directly contact the hot water pipe surface temperature rose by transferred heat.

Numerical Study on the Production of Methane Hydrate by Depressurization Method (감압법을 이용한 메탄하이드레이트 생산에 대한 수치적 연구)

  • Kim, Jin-Hong;Chun, Won-Gee;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.519-523
    • /
    • 2007
  • Gas(or methane) hydrates are solid solutions when water molecules are linked through hydrogen bonding and create host lattice cavities that can enclose a large variety of guest gas molecules. The natural gas hydrate crystal may exist at low temperature above the normal freezing point of water and high pressure greater than about 30 bars. A lot of quantities of natural gas hydrates exists in the earth and many production schemes are being studied. In the present investigation, depressurization method was considered to predict the production of gas and the simulation of the two phase flow - gas and water - in porous media is being carried out. The simulation show about the fluid flow in porous media have a variety of applications in industry. Results provide the appearance of gas and water production, the pressure profile, the saturation of gas/ water/ hydrates profiles and the location of the pressure front.

  • PDF

Current Status of Eco-Friendly Deicing Material Development (친환경 제설제 개발 현황)

  • Seo, Ho Seong;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.25-28
    • /
    • 2016
  • Recently, due to the climate change by global warming, the amount of snow has increased. The situations were demanded to use many snow removal materials. The snow removal materials that used in Korea were solid chloride deicing material. That is calcium chloride($CaCl_2$) and sodium chloride(NaCl). Solid chloride baesd snow removal materials have various property, for example good freezing point depression, deliquescence and economical solvents. However, there are problems such as water pollution, high corrosiveness and ecocide. For such reason, development of eco-friendly deicer was required obligatorily. This study investigated development situation of eco-friendly deicer materials.