• 제목/요약/키워드: Freeform measurement

검색결과 17건 처리시간 0.022초

System Synthesis for On-the-Machine Measuring and Inspection of Freeform Surfaces (자유곡면의 온더머신 측정 및 검사를 위한 시스템 설계)

  • 남우선;정성종
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제15권12호
    • /
    • pp.81-88
    • /
    • 1998
  • Measurement and inspection of freeform surfaces are required in reverse design processes. In the case of surface measurement using a touch probe, probe radius compensation affects measuring accuracy. But current industrial practice depends upon an operator's experience to compensate for probe radius. In this paper, an on-the-machine measuring and inspection system for freeform surfaces is studied. Probe radius compensation methodology is investigated by modeling of B-spline surfaces based on digitized data. The accuracy and reliability of the developed system is verified through various kinds of numerical simulations and on-the-machine experiments.

  • PDF

Wavelength Scanning Lateral Shearing Interferometer for Freeform Surface Measurement (고경사 자유곡면 측정을 위한 파장변조 층밀리기 간섭계)

  • Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Joohyong;Yang, Ho-Soon;Lee, Yun Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제31권3호
    • /
    • pp.199-205
    • /
    • 2014
  • We propose a new variant of lateral shearing interferometer with a tunable laser source that enables 3D surface profile measurements of freeform optics with high speed, high vertical resolution, large departure, and large field-of-view. We have verified the proposed technique by comparing our measurement result with that of an existing technique and measuring a representative sample of freeform optics. Moreover, we propose a new algorithm that is able to compensate the rotational inaccuracy.

3차원 자유곡면 온더머신 측정 및 검사 시스템의 개발

  • 남우선;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.911-914
    • /
    • 1995
  • Measurement and inspection of freeform surface are required in reverse design process. In the case of surface measurement using a touch probe, probe radius compensation affects measuring accuracy But current industrial practice depends upon an operator's experience to compensate for probe radius. In this paper, an on-the-machine measuring and inspection system for freeform surfface was developed. Probe radius compensation methodology was studied via modeling of B-spline surfaces based on digitized data. The accuracy and reliability of the measurement system was confirmed through various kinds of experiments.

  • PDF

Application of Stereo Vision for Shape Measurement of Free-form Surface using Shape-from-shading (자유곡면의 형상 측정에서 shape-from-shading을 접목한 스테레오 비전의 적용)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제16권5호
    • /
    • pp.134-140
    • /
    • 2017
  • Shape-from-shading (SFS) or stereo vision algorithms can be utilized to measure the shape of an object with imaging techniques for effective sensing in non-contact measurements. SFS algorithms could reconstruct the 3D information from a 2D image data, offering relatively comprehensive information. Meanwhile, a stereo vision algorithm needs several feature points or lines to extract 3D information from two 2D images. However, to measure the size of an object with a freeform surface, the two algorithms need some additional information, such as boundary conditions and grids, respectively. In this study, a stereo vision scheme using the depth information obtained by shape-from-shading as patterns was proposed to measure the size of an object with a freeform surface. The feasibility of the scheme was proved with an experiment where the images of an object were acquired by a CCD camera at two positions, then processed by SFS, and finally by stereo matching. The experimental results revealed that the proposed scheme could recognize the size and shape of freeform surface fairly well.

A algorithm development on optical freeform surface reconstruction (광학식 자유곡면 형상복원 알고리즘 개발)

  • Kim, ByoungChang
    • Journal of the Korea Convergence Society
    • /
    • 제7권5호
    • /
    • pp.175-180
    • /
    • 2016
  • The demand for accurate freeform apsheric surface is increasing to satisfy the optical performance. In this paper, we develop the algorithm for opto-mechatronics convergence, that reconstruct the surface 3D profiles from the curvarure data along two orthogonal directions. A synthetic freeform surface with 8.4 m diameter was simulated for the testing. The simulation results show that the reconstruction error is 0.065 nm PV(Peak-to-valley) and 0.013 nm RMS(Root mean square) residual difference. Finally the sensitivity to noise is diagnosed for probe position error, the simulation results proving that the suggested method is robust to position error.

Determination of Sampling Points Based on Curvature distribution (곡률 기반의 측정점 결정 알고리즘 개발)

  • 박현풍;손석배;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.295-298
    • /
    • 2000
  • In this research, a novel sampling strategy for a CMM to inspect freeform surfaces is proposed. Unlike primitive surfaces, it is not easy to determine the number of sampling points and their locations for inspecting freeform surfaces. Since a CMM operates with slower speed in measurement than optical measuring devices, it is important to optimize the number and the locations of sampling points in the inspection process. When a complete inspection of a surface is required, it becomes more critical. Among various factors to cause shape errors of a final product, curvature characteristic is essential due to its effect such as stair-step errors in rapid prototyping and interpolation errors in NC tool paths generation. Shape errors are defined in terms of the average and standard deviation of differences between an original model and a produced part. Proposed algorithms determine the locations of sampling points by analyzing curvature distribution of a given surface. Based on the curvature distribution, a surface area is divided into several sub-areas. In each sub-area, sampling points are located as further as possible. The optimal number of sub-areas. In each sub-area, sampling points are located as further as possible. The optimal number os sub-areas is determined by estimating the average of curvatures. Finally, the proposed method is applied to several surfaces that have shape errors for verification.

  • PDF

Design and Evaluation of an Ultra Precision Rotary Table for Freeform Machine Tools (자유곡면가공기용 초정밀 회전테이블의 설계 및 평가)

  • Hwang, Joo-Ho;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제27권7호
    • /
    • pp.94-100
    • /
    • 2010
  • This paper describes the design and evaluation procedure of an ultra-precision rotary table for freeform generating machined tools. Design of the thrust and journal hydrostatic bearings and experimental evaluation of the table were performed. To get the compact size and less lost motion direct drive servomotor with ultra precision encoder. From the considered design, following performance were confirmed by experiment. The total stiffness of the prototype rotary table was 483.6 $N/{\mu}m$ and 97.6 $N/{\mu}m$ for axial and radial direction, respectively. Rotational accuracy of the table was investigated by capacitive sensor and reversal measurement technique, and 0.10 ${\mu}m$ radial direction and 0.05 ${\mu}m$ axial direction of the rotational accuracy were confirmed. The micro resolution of the table was also investigated with displacement of capacitive sensor, and $0.5/10000^{\circ}$ of micro resolution was confirmed. Index accuracy of the table was evaluated by the autocollimator and polygon mirror, and the $\pm0.39$ arcsec accuracy and $\pm0.16$ arcsec repeatability of the table were confirmed. Those are under the general requirements of ultra precision rotary tables for freeform generating machined tools.

Development of Measurement mechanism of Laser Beam Spot size for Industrial SFF system (산업용 SFF 시스템에서 Laser Beam Spot size 측정 메커니즘 개발)

  • Bae, Sung-Woo;Kim, Dong-Soo;Choi, Kyung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1383-1388
    • /
    • 2007
  • Accuracy and processing time are very important factors when the desired shape is fabricated with Selective Laser Sintering (SLS), one of Solid Freeform Fabrication (SFF) systems. In a conventional SLS process, laser spot size is fixed during laser exposing on the sliced figure. Therefore, it is difficult to accurately and rapidly fabricate the desired shape. In this paper, to deal with those problems an SFF system having ability of changing spot size is developed. The system provides high accuracy and optimal processing time. Specifically, a variable beam expander is employed to adjust spot size for different figures on a sliced shape. Finally, Design and performance estimation of the SFF system employing a variable beam expander are achieved and the mechanism will be addressed to measure the real spot size generated from the variable beam expander.

  • PDF

Fabrication of Freeform Aluminum mirrors for Wide Field Infrared Telescopes

  • Jeong, Byeongjoon;Gwak, Jeongha;Pak, Soojong;Kim, Geon Hee;Lee, Kwang Jo;Park, Junbeom;Lee, Hye-In;Park, Woojin;Ji, Tae-Geun
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제42권1호
    • /
    • pp.57.3-58
    • /
    • 2017
  • Single Point Diamond Turning (SPDT) is a cost-effective technique to fabricate metallic mirrors. In particular, the servo-assisted diamond turning option is highly useful for the fabrication of freeform surfaces. However, the SPDT process leaves periodic tool marks on machined mirror surfaces, leading to undesirable diffraction effect, as well as the deviation of input beam. In order to solve this problem, we propose new SPDT machining conditions to minimize tool marks. We will also show the results from optical measurement and Power Spectral Density (PSD) analysis to evaluate the expectable performance for applications in wide field infrared telescopes.

  • PDF

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Lee Won-Hee;Ahn Young-Jin;Jang Min-Ho;Choi Kyung-Hyun;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제23권4호
    • /
    • pp.183-190
    • /
    • 2006
  • Digital 3D Real Object Duplication System (RODS) consists of 3D Scanner and Solid Freeform Fabrication System (SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and an industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. In case of industrial type SFFS, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Dual-Laser Sintering (SDLS) process and 3-axis Dynamic Focusing Scanner for scanning large area instead of the existing f lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, and scan spacing. Now, this study is in progress to evaluate the effect of experimental parameters on the sintering process.