• Title/Summary/Keyword: Free-Surface Flow

Search Result 831, Processing Time 0.029 seconds

An Application of Algebraic Stress Model to a Two-Dimensional Buoyant Surface Jet (2차원 표층밀도분류에 대한 대수응력모델의 적용)

  • 김기흥;함계운;박준일;허재영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.248-256
    • /
    • 1995
  • The numerical study on the surface buoyant jets has remained of requiring more intensive investigation for problems due to the treatments of free surface, Reynolds stress/flux terms in turbulent flow and especially buoyancy effects on the turbulent fluctuation. etc. The verification of predicted results from the numerical study continues in the qualitative study. because of the lack of experimental data, which seems to be due to the difficulties in measuring the turbulent fluctuations in concentration or temperature fields. In this study, the computer program of Algebraic Stress Model has been developed to investigate the behaviours of two-dimensional surface buoyant jets with free surface boundary condition. The computational results are compared with published experimental data. By comparing these results with experimental data. it is found that this model can predict fairly well the flow characteristics of two-dimensional surface buoyant jets in the momentum-dominant region and buovancy-dominant region. Especially, it is proved that this model can predict the flow characteristics reasonably in buoyancy-dominant region stably stratified due to buoyancy effect.

  • PDF

Calculation of Wavemaking Resistance of High Speed Catamaran Using a Panel Method

  • Lee, Seung-Joon;Joo, Young-Ryeol
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.36-43
    • /
    • 1996
  • In this work, a panel method is described, which cart solve the flow field round a surface-piercing body that experiences lift and wave resistance. As the body boundary condition, a Dirichlet type is employed, and as the free surface boundary condition the Poisson type is implemented, while in its discretization Dawson's 4-point upwind difference scheme is utilized, and as the Kutta condition a Morino-Kuo type is chosen. As to the type of singularity, source panels are distributed on the free surface, and source and dipole panels on the body surface, and dipole panels on the wake surface. For a sample run, a catamaran of the parabolic Wigley hull is chosen, for which experimental data are available, and the predictions by the numerical means and by the experiment are compared for a wide range of parameters.

  • PDF

A Numerical Simulation of a Multi-phase Flow mixed with Air and Water around an Automobile Tire

  • 우종식;김항우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.101-107
    • /
    • 1998
  • A three-dimensional multi-phase flow is simulated around a smooth tire. This simulation is conducted by solving Navier-Stokes equation with a k-$\varepsilon$ turbulent model. The numerical calculations are carried out by modeling a multi-phase free surface flow mixed with air and water at the inlet. The numerical solutions show an intuitively resonable behavior of water around a moving tire. The calculated pressure around the tire surface along the moving direction is presented. The moving velocities of the tire are chosen to be 30, 40, 60, and 70 km/h. The numerically simulated pressures around the tire are compared with existing experimental data. The comparison shows a new possible tool of analyzing a hydroplaning phenomenon for an automobile tire by means of a computational fluid dynamics.

  • PDF

Numerical Analysis of Wind Driven Current and Mesoscale Air Flow in Coastal Region with Land Topography (육상지형을 고려한 연안해역에서의 취송류에 관한 수치해석)

  • Lee, Seong-Dae;Kim, In-Ho;Hong, Chang-Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1925-1930
    • /
    • 2006
  • A quasi depth-varying mathematical model for wind-generated circulation in coastal areas, expressed in terms of the depth-averaged horizontal velocity components and free surface elevation was validated and used to understand the diurnal circulation process. The wind velocity is considered as a dominant factor for driving the wind generated current. In this paper, three dimensional numerical experiments that included the land topography were used to investigate the mesoscale air flow over the coastal regions. The surface temperature of the inland was determined through the surface heat budget consideration with inclusion of a layer of vegetation. A series of numerical experiments were then carried out to investigate the diurnal response of the air flow and wind-generated circulation to various types of surface inhomogeneities.

  • PDF

An Experimental Study on Heat Transfer and Fluid Flow on the Semi-Circular Concave Surface Cooled by Jet Impingement (제트충돌냉각되는 반원 오목면에서 열전달 및 유체유동에 관한 실험적 연구)

  • Yu, Han-Seong;Yang, Geun-Yeong;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2991-3006
    • /
    • 1996
  • An experimental study of jet flow and heat transfer has been carried out for the jet impingement cooling on a semi-circular concave surface. For the jet impingement on the concave surface, three different regions-free jet region, stagnation region, and wall jet flow region-exist, and the distributions of mean velocity and fluctuating velocity for each region have been measured by Laser Doppler Velocimeter. Of particular interests are the effects of jet Reynolds number, the distance between the nozzle exit and cooling surface apex, and the distance from the stagnation point in the circumferential direction. The resulting characteristics of heat transfer at the stagnation point and the variation of heat transfer along the circumferential direction including the existence of secondary peak have been explained in conjunction with measured impinge jet flow.

An Experimental Study on Flow Characteristics of a Supersonic Impinging Jet (초음속 충돌제트의 유동특성에 대한 실험적 연구)

  • 신필권;신완순;이택상;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.10-19
    • /
    • 1998
  • When an under-expanded supersonic jet impinges on an inclined flat surface, a complex flow structure is established due to the intersection between the flat surface and the shock system of the free jet. This study reports on an experimental results of flows due to under-expanded axisymmetric sonic jets impinging on flat plate. Plate inclination from $60^{\cire}$~$90^{\cire}$ were investigated by means of detailed measurements of the surface pressure and schlieren photograph and surface flow visualization. The schlieren photograph are consistent with the pressure distribution and the surface flow visualization pictures are clearly related to the pressure distributions. The maximum wall pressure is found to be large on the inclined plate than on the perpendicular plate.

  • PDF

A Study on the Numerical Radiation Condition in the Steady Wave Problem (정상파 문제의 방사조건에 관한 연구)

  • Lee, Gwang-Ho;Jeon, Ho-Hwan;Seong, Chang-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.97-110
    • /
    • 1998
  • The numerical damping and dispersion error characteristics associated with difference schemes and a panel shift method used for the calculation of steady free surface flows by a panel method are an analysed in this paper. First, 12 finite difference operators used for the double model flow by Letcher are applied to a two dimensional cylinder with the Kelvin free surface condition and the numerical errors with these schemes are compared with those by the panel shift method. Then, 3-D waves due to a submerged source are calculated by the difference schemes, the panel shift method and also by a higher order boundary element method(HOBEM). Finally, the waves and wave resistance for Wigley's hull are calculated with these three schemes. It is shown that the panel shift method is free of numerical damping and dispersion error and performs better than the difference schemes. However, it can be concluded that the HOBEM also free of the numerical damping and dispersion error is the most stable, accurate and efficient.

  • PDF

FREE SURFACE FLOW ANALYSIS BY SOROBAN GRID BASED CIP MEHTOD (Soroban grid 기반 CIP법을 이용한 자유표면 유동해석)

  • Im, H.N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.326-334
    • /
    • 2010
  • In this study, we provide a comprehensive review of the CIP(Constrained Interpolation Pro file/Cubic Interpolated Propagation) method with a pressure-based algorithm that is known as a general numerical solver for soled liquid, gas and plasmas. And also we introduce a body-fitted grid system(Soroban grid) for computation of strongly nonlinear marine hydrodynamic problems such as slamming water on deck, wave impact by green water. This grid system can keep the third-order accuracy in time and space with the help of the CIP method. The grid system consists of the straight lines and grid points. In the 2-dimensional grid case, each grid points moving in these lines like abacus - Soroban in Japanese. The length of each line can be different and the number of grid points in each line can be different. Mesh generation and searching of upstream departure point are very simple and possible to mesh-free treatment. To optimize computation of free-surface and multi-fluid flows, We adopt the C-CUP method. In most of the earlier computations, the C-CUP method was used with a staggered-grid approach. Here, because of the mesh free nature of the Soroban grid, we use the C-CUP method with a collocated-grid approach.

  • PDF