• Title/Summary/Keyword: Free-Surface Flow

Search Result 830, Processing Time 0.024 seconds

Analysis of Gas Injection System based on Flow Visualization (가시화를 통한 Gas Injection System에 관한 연구)

  • Seo Dong-pyo;Oh Yool-kwon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.85-88
    • /
    • 2002
  • In order to visually analyze the flow characteristics, gas was injected into the liquid bath through nozzle installed at the center of bottom of the bath. When gas was injected into the liquid bath, several flow patterns were observed bubble-liquid plumb, the spout flow that occurred at the free surface, liquid circulation flow by bubble's behavior, etc. Various bubbles, from small bubbles to Taylor bubbles, consisted of the bubble-liquid plumb. In the pure liquid region, the large and small several vortices were formed and irregularly circulated. These irregular repetition and circulation play a important role of mixing in the bath. The vortices were developed in the upper and the side wall regions and the movement of flow in the low region was very small. It is known as 'dead zone'.

  • PDF

A FINITE-ELEMENT METHOD FOR FREE-SURFACE FLOW PROBLEMS

  • Bai, Kwang-June;Kim, Jang-Whan
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-27
    • /
    • 1995
  • In this paper a finite element method for free-surface problems is described. the method is based on two different forms of Hamilton's principle. To test the present computational method two specific wave problems are investigated; the dispersion relations and the nonlinear effect for the well-known solitary waves are treated. The convergence test shows that the present scheme is more efficient than other existing methods, e.g. perturbation scheme.

Numerical Calculation of the Flow around a Ship by Means of Rankine Source Distribution (Rankine Source 분포를 이용한 선체주위 자유표면류의 수치계산)

  • Jae-Shin,Kim;Kwi-Joo,Lee;Soon-Won,Joa
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.32-42
    • /
    • 1990
  • The method using Rankine Soure distribution over the hull surface and undisturbed free surface was applied to calculate the free surface flow around a ship. The ship hull as well as a local portion of the undisturbed free surface arc geometrically represented by quadrilateral panels and the source density is determined so as to satisfy the linearized free surface condition based on the double model flow. The pressure distribution, wave resistance, wave profile and hydrodynamic sinkage force and trim moment for the Wigley hull and the Series 60 hull with $C_B=0.60$ were calculated in the fixed condition. The calculated results were compared with the measured values. The dependance of the solution on the panel arrangement, particularly on the free suraface, was also studied through 11 numerical test cases for the Wigley hull.

  • PDF

Effect Analysis of Relative Position of Blade on Performance of Micro Gravitational Vortex Turbine in Free Water Surface (자유수면에서 마이크로 중력식 와류 수차 성능에 블레이드의 상대위치 변화가 미치는 영향 분석)

  • Choi, In-Ho;Kim, Jong-Woo;Chung, Gi-Soo
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.196-203
    • /
    • 2022
  • This paper contributed to the understanding of the effect of the blade relative position on performance of micro gravitational vortex turbine in free water surface. In a constant vortex flow, the rotation, voltage and current of micro vortex water turbine were measured according to the position change of the blade installed at the relative vortex height (y/hv) ranging from 0 to 0.778 below the free water surface. The flow rate ranged from 0.0063 to 0.00662 m3/s. The results of the experiments showed that relative positions of the blade affected the performance of vortex water turbine because the distributions of incoming flow velocity and turbulence intensity were changed. The highest amount of the energy generated by the vortex water turbine occurred in the relative vortex height ranging from 0.111 to 0.222. The output power at the relative vortex height of 0.111 was about 2.4 times larger than the relative vortex height of 0.588 below the free water surface.

Numerical Analysis of Ocean Wave by Multi-Grid Method (복합격자 방법에 의한 해양파의 수치해석)

  • 곽승현
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.175-182
    • /
    • 1999
  • The ocean wave is hydrodynamically investigated to get more reliable solution. To improve the computational accuracy more fine grids are used with relatively less computer storage on the free surface. One element of the free surface is discretized into more fine grids because the free-surface waves are much affected by the grid size in the finite difference scheme. Here the multi-grid method is applied to confirm the efficiency for the S103 ship model by solving the Navier-Stokes equation for the turbulent flows. According to the computational result approximately 30% can be improved in the free surface generation, Finally the limiting streamlines show numerical result is similar to the experiment by twin tuft.

  • PDF

Hamilton제s Principle for the Free Surface Waves of Finite Depth (유한수심 자유표면파 문제에 적용된 해밀톤원리)

  • 김도영
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.96-104
    • /
    • 1996
  • Hamilton's principle is used to derive Euler-Lagrange equations for free surface flow problems of incompressible ideal fluid. The velocity field is chosen to satisfy the continuity equation a priori. This approach results in a hierarchial set of governing equations consist of two evolution equations with respect to two canonical variables and corresponding boundary value problems. The free surface elevation and the Lagrange's multiplier are the canonical variables in Hamilton's sense. This Lagrange's multiplier is a velocity potential defined on the free surface. Energy is conserved as a consequence of the Hamiltonian structure. These equations can be applied to waves in water of finite depth including generalization of Hamilton's equations given by Miles and Salmon.

  • PDF

Numerical Simulation of Three Dimensional Free Surface Flow (3차원 자유표면 유동의 수치 시뮬레이션)

  • 강신영
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 1990
  • For the tracking of three dimensional free surface motions, a method referred to as the Volume of Fluid(VOF) algorithm is extended. In order to calculate the slope of three dimensional free surface which is the most important for the advection algorithm that decides the amount of fluid from cell to cell and for the application of free surface boundary condition, a simple method utilizing two dimensional slope informations is introduced. The extended algroithm is tested by demonstrating the simulation of a propagating sinusoidal wave through the channel whose width changes abruptly.

  • PDF

A NUMERICAL STUDY OF THE FREE SURFACE EFFECT ON RISING BUBBLE (자유표면이 상승기포의 파괴에 미치는 영향에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.376-379
    • /
    • 2010
  • Bubble rising phenomenon is widely founded in many industrial applications such as a stream generator in power plant. Many experimental and numerical researches have been already performed to predict dynamic behavior of the bubble rising process. Recently numerical approaches are getting popular since it can offer much detailed information which is almost impossible to obtain from the experiments. Rising bubble could penetrate through the top free surface which makes the problem much more complicate in addition to the phase changing effect even with latest numerical techniques. In this paper, the top free surface effect on rising bubble has been investigated. The gas-liquid interface was explicitly tracked using high-order Level Contour Reconstruction Method(LCRM) which is a hybridization of Front-Tracking and Level-Set method. Break-up behavior of rising bubble at free surface showed different characteristics with initial diameter of bubble.

  • PDF

Numerical Simulation on the Free Surface using implicit boundary condition (내재적 경계 조건을 이용한 자유표면 유동 수치해석)

  • Lee G. H.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.156-161
    • /
    • 1998
  • This describes a numerical method for predicting the incompressible unsteady laminar three-dimensional flows of fluid behaviour with free-surface. The elliptic differential equations governing the flows have been linearized by means of finite-difference approximations, and the resulting equations have been solved via a fully-implicit iterative method. The free-surface is defined by the motion of a set of marker particles and interface behaviour was investigated by way of a 'Lagrangian' technique. Using the GALA concept of Spalding, the conventional mass continuity equation is modified to form a volumetric or bulk-continuity equation. The use of this bulk-continuity relation allows the hydrodynamic variables to be computed over the entire flow domain including both liquid and gas regions. Thus, the free-surface boundary conditions are imposed implicitly and the problem formulation is greatly simplified. The numerical procedure is validated by comparing the predicted results of a periodic standing waves problems with analytic solutions or experimental results from the literature. The results show that this numerical method produces accurate and physically realistic predictions of three-dimensional free-surface flows.

  • PDF

Cooling Flow Characteristics of an Impinging Liquid Jet Using ALE Finite Element Method (ALE 유한요소법에 의한 충돌 액체 분류 냉각 유동 특성 해석)

  • Sung, Jaeyong;Choi, Hyoung Gwon;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.43-57
    • /
    • 1999
  • The fluid flow and heat transfer in a thin liquid film are investigated numerically. The flow Is assumed to be two-dimensional laminar and surface tension is considered. The most important characteristics of this flow is the existence of a hydraulic jump through which the flow undergoes very sharp and discontinuous change. Arbitrary Lagrangian-Eulerian(ALE) method is used to describe moving free boundary and a modified SIMPLE algorithm based on streamline upwind Petrov-Galerkin(SUPG) finite element method is used for time marching iterative solution. The numerical results obtained by solving unsteady full Navier-Stokes equations are presented for planar and radial flows subject to constant wall temperature or constant wall heat flux, and compared with available experimental data. It Is discussed systematically how the inlet Reynolds and Froude numbers and surface tension affect the formation of a hydraulic jump. In particular, the effect of temperature dependent fluid properties is also discussed.