• Title/Summary/Keyword: Free Motion

Search Result 1,371, Processing Time 0.025 seconds

Integrated CAD/CAE System for Planing Hull Form Design (활주형 선박의 선형설계를 위한 통합 CAD/CAE 시스템)

  • 김태윤;김동준
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.298-304
    • /
    • 2003
  • In this paper a free-form hull design program and performance prediction program for planing boat is introduced. This program enables the designer to do complex geometric hull shape design on a personal computer and accurately to predict power requirements for a given loading and velocity. For a free form design, Bezier curve model is adopted as a basic representation tool of curves and surfaces, and this program has versatile functions to do fairing jobs with a convenient graphical user interface. After creating a hull form the geometric data is provided in a manner compatible with a variety of analysis tools including 'Motion Analysis(by Zarnick)' for prediction of motion characteristics in regular waves, 'Running Attitude (by Savitsky)' for prediction of the running attitude and required power.

Earthquake Response Analysis through a Fundamental Solution to Multilayered Half-Planes (다층반무한 기본해를 이용한 지진응답해석)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.128-135
    • /
    • 1997
  • The indirect boundary integral equation is formulated to analyze the behavior of a cavity in a multilayered half-plane subjected to earthquake waves. This formulation uses the fundamental solutions that are numerically calculated by the generalized transmission and reflection coefficient method. The free surface of the cavity without external excitation influences the behavior of the half-plane. Consequently this analysis adds the consideration of scattering-field into the analysis and the total motion field of the cavity is decomposed into the free-field and scattering-field motions. The free-field motion is obtained from the modification of the transmission and reflection coefficient method. The scattering-field motion is calculated is calculated by the indirect boundary value problem which has the ficticious boundaries and sources. In this study, P wave, SV wave, SH wave, and Rayleigh wave are analyzed respectively.

  • PDF

Nonlinear Motion for an Elliptic Cylinder under Free Surface (자유표면 아래의 타원형 실린더에 대한 비선형 운동)

  • 이호영;임춘규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.38-44
    • /
    • 2004
  • The motion response analysis of a submerged elliptic cylinder in waves is presented and the elliptic cylinder is a simplification of the section of submarine in this paper. The method is based on boundary integral method and two-dimensional 3 degree motions are calculated in regular harmonic waves. The fully nonlinear free surface boundary condition is assumed in an numerical domain and this solution is matched along an assumed boundary as a linear solution composed of transient Green function, The large amplitude motions of an elliptic cylinder are directly simulated and effects of wave frequency, wave amplitude and the distance from buoyancy center to gravity center are discussed.

Analysis of Steady Flows in a Rectangular Container with a Characterization of the Free Surface by One-Dimensional Motion (1차원 표면유동의 정량화에 따른 직사각형 용기내의 정상유동 해석)

  • 변민수;서용권
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.227-231
    • /
    • 2001
  • Analysis of two-dimensional unsteady flows with a free surface in a rectangular container subject to a linear reciprocating force is performed by numerical and experimental methods. FVM is used for the numerical computation of the two-dimensional flows. We consider the surface tension as well as the viscous/elastic properties of the free surface. One-dimensional analysis as well as experiment is used in establishing the free surface properties. The steady recirculatory flow is visualized by a laser sheet. It is shown that the one-dimensional analysis provides useful informations associated with the free surface properties.

  • PDF

Effect of a Concentrated Mass on the Dynamic Stability of Spinning Free-Free Beam Subjected to a Thrust (회전하는 양단자유보의 동적 안정성에 대한 추력과 집중질량의 영향에 관한 연구)

  • Yoon, Seung-Joon;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.695-700
    • /
    • 2000
  • The dynamic stability of spinning beam with free boundary conditions for both edges subjected to a tip follower force $P_0+P_1cos{\Omega}t$ is analyzed. It is studied that the beam has a concentrated mass. and then the effects of the axial locations of the mass are studied. The beam is modelled with the Timoshenko type shear deformations. The Hamilton's principle is used to derive the equations of motion, and the critical spinning speed of a beam subjected to a follower force with various non-dimensional parameters is investigated. The finite elements are used with $C^0$ continuity to analyze the spinning beam model, and the method of multiple scales is tried to investigate the dynamic instability regions. The governing equations of motion involve periodic coefficients, which are not in the form of standard Mathieu-Hill equations. The result shows that the concentrated mass increases the dynamic stability of the spinning free-free beam subjected to a thrust.

  • PDF

Chaotic Responses of Curved Plate under Sinusoidal Loading

  • W.Y. Poon;C.F. Ng;Lee, Y.Y.
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.85-96
    • /
    • 2003
  • In the present investigation, the nonlinear dynamic buckling of a curved plate subjected to sinusoidal loading is examined. By the theoretical analyses, a highly nonlinear snap-through motion of a clamped-free-clamped-free plate and its effect on the overall vibration response are investigated. The problem is reduced to that of a single degree of freedom system with the Rayleigh-Ritz procedure. The resulting nonlinear governing equation is solved using Runge-Kutta (RK-4) numerical integration method. The snap-through boundaries, which vary with different damping coefficient and linear circular frequency of the flat plate are studied and given in terms of force and displacement. The relationships between static and dynamic responses at the start of a snap-through motion are also predicted. The analysis brings out various characteristic features of the phenomenon, i.e. 1) small oscillation about the buckled position-softening spring type motion, 2) chaotic motion of intermittent snap-through, and 3) large oscillation of continuous snap-through motion crossing the two buckled positions-hardening spring type. The responses of buckled plate were found to be greatly affected by the snap-through motion. Therefore, better understanding of the snap-through motion is needed to predict the full dynamic response of a curved plate.

Study of Sloshing Flow in a Rectangular Tank (사각용기의 슬로싱 유동에 관한 연구)

  • Ji, Young-Moo;Shin, Young-Seop;Park, Jun-Sang;Hyun, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.617-624
    • /
    • 2011
  • The two-dimensional sloshing problem in a rigid rectangular tank with a free surface is considered. The flow is generated by a container in harmonic motion in time along the horizontal axis, i.e., a container excited by u=Asin($2{\pi}ft$) where u denotes the container velocity imposed externally, A is the amplitude of the oscillation velocity, and f is the frequency of oscillation. Experimental apparatus is arranged to investigate the large-amplitude sloshing flows in off-resonant conditions, where the large amplitude means that A~O(1), and the distance, S, is comparable to the breadth, L, of the container, i.e., L/S~O(1). Comprehensive particle image velocimetry (PIV) data are obtained, which show that the flow physics of the nonlinear off-resonant sloshing problem can be characterized into three peculiar free surface motions: standing-wave motions similar to those of linear sloshing, a run-up phenomenon along the vertical sidewall at the moment of turn-over of the container, and gradually propagating bore motion from the sidewall to the interior fluid region, like a hydraulic jump.

Computational fluid dynamics simulation for tuned liquid column dampers in horizontal motion

  • Chang, Cheng-Hsin
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.435-447
    • /
    • 2011
  • A Computational Fluid Dynamics model is presented in this study for the simulation of the complex fluid flows with free surfaces inside the Tuned Liquid Column Dampers in horizontal motion. The characteristics of the fluid model of the TLCD in horizontal motion include the free surface of the multiphase flow and the horizontal moving frame. In this study, the time depend unsteady Standard ${\kappa}-{\varepsilon}$ turbulent model based on Navier-Stokes equations is chosen. The volume of fluid (VOF) method and sliding mesh technique are adopted to track the free surface of water inside the vertical columns of TLCD and treat the moving boundary of the walls of TLCD in horizontal motion. Several model solution parameters comprising different time steps, mesh sizes, convergence criteria and discretization schemes are examined to establish model parametric independency results. The simulation results are compared with the experimental data in the dimensionless amplitude of the water column in four different configured groups of TLCDs with four different orifice areas. The predicted natural frequencies and the head loss coefficient of TLCDs from CFD model are also compared with the experimental data. The predicted numerical results agree well with the available experimental data.

Circular Motion Test Simulation of KVLCC1 Using CFD (CFD를 이용한 KVLCC1의 Circular Motion Test 시뮬레이션)

  • Shin, Hyun-Kyoung;Jung, Jae-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.377-387
    • /
    • 2010
  • In this study, the turbulent free surface around KVLCC1 employed in the circular motion test simulation is numerically calculated using a commercial CFD(Computational Fluid Dynamics) code, FLUENT. Also, hydrodynamic forces and yaw moments around a ship model are calculated during the steady turning. Numerical simulations of the turbulent flows with free surface around KVLCC1 have been carried out by use of RANS equation based on calculation of hydrodynamic forces and yaw moments exerted upon the ship hull. Wave elevation is simulated by using the VOF method. VOF method is known as one of the most effective numerical techniques handling two-fluid domains of different density simultaneously. Boundary layer thickness and wake field are changed various yaw velocities of ship model during the steady turning. The calculated hydrodynamic forces are compared with those obtained by model tests.

Micro-discharge and Motion of Conducting Particles under AC Voltage in $SF_6$ Gas ($SF_6$가스내 금속이물의 전계에 의한 거동 및 미소방전)

  • Lee, Jae-Gul;Lee, Kon;Lee, Kang-Su;Kim, Young-Chan;Kwak, Hee-Ro;Kim, Du-Suk;Park, Joung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.898-900
    • /
    • 1998
  • This paper describes the motion characteristics and micro-discharge of the free conducting particles between plain electrodes under alternating voltage. The particles move between both electrodes due to electrostatic force by applied AC voltage. Various types and sizes of free conducting particles were used to study the motion and micro-discharge characteristics. The micro-discharge and breakdown were observed during the particle motion.

  • PDF