DOI QR코드

DOI QR Code

Study of Sloshing Flow in a Rectangular Tank

사각용기의 슬로싱 유동에 관한 연구

  • Ji, Young-Moo (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Shin, Young-Seop (Dept. of Computer Aided Design, Halla Univ.) ;
  • Park, Jun-Sang (Dept. of Mechanical Engineering, Halla Univ.) ;
  • Hyun, Jae-Min (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • 지영무 (한국과학기술원 기계공학과) ;
  • 신영섭 (한라대학교 컴퓨터 응용 설계학과) ;
  • 박준상 (한라대학교 기계공학과) ;
  • 현재민 (한국과학기술원 기계공학과)
  • Received : 2010.12.20
  • Accepted : 2011.03.30
  • Published : 2011.06.01

Abstract

The two-dimensional sloshing problem in a rigid rectangular tank with a free surface is considered. The flow is generated by a container in harmonic motion in time along the horizontal axis, i.e., a container excited by u=Asin($2{\pi}ft$) where u denotes the container velocity imposed externally, A is the amplitude of the oscillation velocity, and f is the frequency of oscillation. Experimental apparatus is arranged to investigate the large-amplitude sloshing flows in off-resonant conditions, where the large amplitude means that A~O(1), and the distance, S, is comparable to the breadth, L, of the container, i.e., L/S~O(1). Comprehensive particle image velocimetry (PIV) data are obtained, which show that the flow physics of the nonlinear off-resonant sloshing problem can be characterized into three peculiar free surface motions: standing-wave motions similar to those of linear sloshing, a run-up phenomenon along the vertical sidewall at the moment of turn-over of the container, and gradually propagating bore motion from the sidewall to the interior fluid region, like a hydraulic jump.

본 연구에서는 사각용기 내에서의 자유표면을 갖는 2차원 슬로싱 문제에 대하여 고찰하였다. 용기 내부의 유동은 수평방향의 조화운동을 통해 형성되며, 외부 가진 속도는 u=Asin($2{\pi}ft$)으로 정의 된다. 여기서 u, A�� 그리고 f는 외부로부터 작용하는 가진 속도, 변위 그리고 주파수를 각각 나타낸다. 큰 변위(A~O(1)) 슬로싱 문제의 해석을 위한 실험설비를 구축하였으며, 광범위한 영역에서의 PIV실험을 수행하였다. 실험을 통해 자유표면의 움직임(motion)을 각각 서로 다른 물리적 특성을 갖는 세 가지; 선형 슬로싱의 자유표면의 움직임과 유사한 standing wave motion, 사각용기의 속도가 0을 지나는 순간(the moment of turn-over) 측벽에서 발생하는 run-up motion 그리고 측벽으로부터 내부유체로 점차적으로 전파되는 bore motion으로 분류하였다.

Keywords

References

  1. Faltinsen, O. M., 1978, "A Numerical Nonlinear Method of Sloshing in Tanks with Two Dimensional Flow," J. Ship Res., Vol. 22, No. 3, pp. 193-202.
  2. Faltinsen, O. M. and Timokha, A. N., 2001, "Adaptive Multimodal Approach to Nonlinear Sloshing in a Rectangular Tank," J. Fluid Mech., Vol. 432, pp. 167-200.
  3. Hill, D. F., 2003, "Transient and Steady State Amplitude of Forced Waves in Rectangular Basins," Phys. Fluid, Vol. 15, No. 6, pp. 1576-1587. https://doi.org/10.1063/1.1569917
  4. Verhagen, H. G. and Wijingaarden, L., 1965, "Non-Linear Oscillation of Fluid in a Container," J. Fluid Mech., Vol. 22, No. 4, pp. 737-751. https://doi.org/10.1017/S0022112065001118
  5. Okamoto, T. and Kawahara, M., 1990, "Two Dimensional Sloshing Analysis by Lagrangian Finite Element Method," Int. J. Numer. Method Fluid, Vol. 11, No. 5, pp. 453-477. https://doi.org/10.1002/fld.1650110502
  6. Akyildiz, H. and Unal, E., 2005, "Experimental Investigation of Pressure Distribution on a Rectangular Tank Due to the Liquid Sloshing," Ocean Eng., Vol. 32, No. 11, pp. 1503-1516. https://doi.org/10.1016/j.oceaneng.2004.11.006
  7. Solaas, F. and Faltinsen, O. M., 1997, "Combined Numerical and Analytic Solution for Sloshing in Two-Dimensional Tanks of General Shape," J. Ship Res., Vol. 41, No. 2, pp. 118-129.
  8. Chen, B. F. and Nokes, R., 2005, "Time-Independent Finite Difference Analysis of Fully Non-Linear and Viscous Fluid Sloshing in a Rectangular Tank," J. Comput. Phys., Vol. 209, No. 1, pp. 47-81. https://doi.org/10.1016/j.jcp.2005.03.006
  9. Wu, G. X., Ma, Q. M. and Taylor, R. E., 1998, "Numerical Simulation of Sloshing Waves in a 3D Tank Based on a Finite Element Method," Appl. Ocean Res., Vol. 20, No. 6, pp. 337-355. https://doi.org/10.1016/S0141-1187(98)00030-3
  10. Benjamin, T. B. and Feir, J. E., 1967, "The Disintegration of Wave Trains on Deep Water. Part 1. Theory," J. Fluid Mech., Vol.27, pp. 417-430. https://doi.org/10.1017/S002211206700045X

Cited by

  1. Die design of large spherical curvature hot forming process for improving the dimensional accuracy vol.30, pp.9, 2016, https://doi.org/10.1007/s12206-016-0846-6