• Title/Summary/Keyword: Free Motion

Search Result 1,371, Processing Time 0.029 seconds

A Development of Theatre Art Major Course based on Case Studies of Media Technology-converged Performances (미디어기술 융합공연 사례분석을 통한 무대미술 전공 교과목 연구)

  • Park, Jin-Won;Kim, Ga-Eun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.5
    • /
    • pp.562-571
    • /
    • 2019
  • The expansion of the performing arts market to include new genres of art that combine art and cutting-edge media technology has surpassed the limitations of traditional theatre art elements such as stage, costumes, lighting, sound, and props, allowing free expression of space-time and visual art. It is growing into a wide area with unlimited potential in the performing arts sector. In response to these changes and the demands of the time, there is an increasing demand for multi-talents who can plan and produce arts and technology-converged contents that will contribute to the development of the performing arts industry. As a result, university departments related to theatre art across the country feel that it is urgent to develop curricula that will enhance students' competency by incorporating the latest media technologies such as virtual reality, holography, and interactive motion sensors into the existing performance art visualization process. In this study, the author will examine the process of developing courses in technology-incorporated theatre art (design) through case studies of media technology-converged performances from the past 10 years. Based on the traditional concept of theatre art, the attempt to fuse stage art with media technology will be a cornerstone of attempts to foster a group of talented artists who transcend the limits of creative visual expression and creative value.

A Study on the Development of 3D Virtual Reality Campus Tour System for the Adaptation of University Life to Freshmen in Non-face-to-face Situation - Autonomous Operation of Campus Surrounding Environment and University Information Guide Screen Design Using Visual Focus Movement - (비대면 상황에서 신입생 대학생활적응을 위한 3차원 가상현실 캠퍼스 투어시스템 개발연구 - 시야초점의 움직임을 활용한 캠퍼스주변 환경의 자유로운 이동과 대학정보안내화면 GUI설계 -)

  • Lim, Jang-Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.3
    • /
    • pp.59-75
    • /
    • 2021
  • This study aims to establish a foundation for autonomous driving on campus and communication of abundant university information in the HCI environment in a VR environment where college freshmen can freely travel around campus facilities. The purpose of this study is to develop a three-dimensional VR-style campus tour system to establish a media environment to provide abundant university information guidance services to freshmen in non-face-to-face situations. This study designed a three-dimensional virtual reality campus tour system to solve the problem of discontinuity in which VR360 filming space does not lead to space like reality, and to solve many problems of expertise in VR technology by constructing an integrated production environment of tour system. We aim to solve the problem of inefficiency, which requires a large amount of momentum in virtual space, by constructing a GUI that utilizes the motion of the field of view focus. The campus environment was designed as a three-dimensional virtual reality using a three-dimensional graphic design. In non-face-to-face situations, college freshmen freely transformed the HMD VR device, smartphone, FPS operation mode of the gyroscope sensor. The design elements of the three-dimensional virtual reality campus tour system were classified as ①Visualization of factual experiences, ②Continuity of space movement, ③Operation, automatic operation mode, ④Natural landscape animation, ⑤Animation according to wind direction, ⑥Actual space movement mode, ⑦Informatization of spatial understanding, ⑧GUI by experience environment, ⑨Text GUI by building, ⑩VR360, 3D360 Studio Environment, ⑪Three-dimensional virtual space coupling block module, ⑫3D360-3D Virtual Space Transmedia Zone, ⑬Transformable GUI(VR Device Dual Viewer-Gyro Sensor Full Viewer-FPS Operation Viewer) and an integrated production environment was established with each element. It is launched online (http://vautu.com/u1) by constructing a GUI for free driving mode and college information screens to adapt to college life for freshmen, and designing an environment that can be used simultaneously by current media such as PCs, Android, and iPads. Therefore, it conducted user research, held a development presentation, a forum on excellence in university innovation support projects, and applied it as a system on the website of a particular university. College freshmen will be able to experience university information directly from the web and app to the virtual reality campus environment.

Numerical Study of Heat Flux and BOG in C-Type Liquefied Hydrogen Tank under Sloshing Excitation at the Saturated State (포화상태에 놓인 C-Type 액체수소 탱크의 슬로싱이 열 유속과 BOG에 미치는 변화의 수치적 분석)

  • Lee, Jin-Ho;Hwang, Se-Yun;Lee, Sung-Je;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.299-308
    • /
    • 2022
  • This study was conducted to predict the tendency for heat exchange and boil-off gas (BOG) in a liquefied hydrogen tank under sloshing excitation. First, athe fluid domain excited by sloshing was modeled using a multiphase-thermal flow domain in which liquid hydrogen and hydrogen gas are in the saturated state. Both the the volume of fluid (VOF) and Eulerian-based multi-phase flow methods were applied to validate the accuracy of the pressure prediction. Second, it was indirectly shown that the fluid velocity prediction could be accurate by comparing the free surface and impact pressure from the computational fluid dynamics with those from the experimental results. Thereafter, the heat ingress from the external convective heat flux was reflected on the outer surfaces of the hydrogen tank. Eulerian-based multiphase-heat flow analysis was performed for a two-dimensional Type-C cylindrical hydrogen tank under rotational sloshing motion, and an inflation technique was applied to transform the fluid domain into a computational grid model. The heat exchange and heat flux in the hydrogen liquid-gas mixture were calculated throughout the analysis,, whereas the mass transfer and vaporization models were excluded to account for the pure heat exchange between the liquid and gas in the saturated state. In addition, forced convective heat transfer by sloshing on the inner wall of the tank was not reflected so that the heat exchange in the multiphase flow of liquid and gas could only be considered. Finally, the effect of sloshing on the amount of heat exchange between liquid and gas hydrogen was discussed. Considering the heat ingress into liquid hydrogen according to the presence/absence of a sloshing excitation, the amount of heat flux and BOG were discussed for each filling ratio.

On-orbit Thermal Characteristic for Multilayered High Damping Yoke Structure Based on Superelastic Shape Memory Alloy for Passive Vibration Control of Solar Panels (태양전지판의 수동형 제진을 위한 초탄성 형상기억합금 기반 적층형 고댐핑 요크 구조의 궤도상 열적 특성 분석)

  • Min-Young Son;Jae-Hyeon Park;Bong-Geon Chae;Sung-Woo Park;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In a previous study, a structure of a superplastic yoke consisting of a thin FR4 layer laminated with viscoelastic tape on both sides of a shape memory alloy (SMA) was proposed to reduce residual vibration generated by a deployable solar panel during high motion of a satellite. Damping properties of viscoelastic tapes will change with temperature, which can directly affect vibration reduction performance of the yoke. To check damping performance of the yoke at different temperatures, free damping tests were performed under various temperature conditions to identify the temperature range where the damping performance was maximized. Based on above temperature test results, this paper predicts temperature of the yoke through orbital thermal analysis so that the yoke can have effective damping performance even if it is exposed to an orbital thermal environment. In addition, the thermal design method was described so that the yoke could have optimal vibration reduction performance.

Evaluation of Maneuverability of Small Fishing Vessels Based on CFD Simulation under Standard Loading Condition (CFD 시뮬레이션 기반 소형 어선의 표준재화상태에 따른 조종성능 평가)

  • Sun woo Lee;Sang hyun Kim;Hye woo Kim;Hyung seok Yoon;Chang woo Song;Joo hyung Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.348-357
    • /
    • 2024
  • Maneuvering performance is crucial for fishing vessels, especially under operational conditions that involve frequent course changes and weight variations due to catch. Small vessel accidents account for approximately 60% of maritime incidents as of 2022, mainly attributed to collisions and stranding accidents due to insufficient maneuvering performance. Especially, accidents that occur on small vessels less than 10 tons account for about 65% of all accidents. The absence of international standards presents challenges in accurately evaluating the maneuvering performance of small vessels. In this study, a 4.99-ton small fishing vessel was selected as the target, and a 3d-cad model was created. The commercial numerical analysis program STAR-CCM+ was employed to establish a simulation environment for the vessel's maneuvring motion. Based on this standard loading conditions and weight distribution were considered, 10° / 10°, 20° / 20° zigzag tests and 35° turning test were conducted. The results revealed a tendency for decreased yaw and course-keeping performance and improved turning performance as the hull weight increased. However, in partial arrival and full load departure condition, the manoeuvering performance were relatively poor. Based on this, the need for evaluation of maneuvering and standardized criteria of maneuvering performance for safe navigation of small vessels is presented. Furthermore, it is expected that the evaluation results of maneuvering performance in this study can serve as fundamental data for establishing criteria for evaluating the maneuvering performance of small vessels.

A Study on the Neumann-Kelvin Problem of the Wave Resistance (조파저항에서의 Neumann-Kelvin 문제에 대한 연구)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 1985
  • The calculation of the resulting fluid motion is an important problem of ship hydrodynamics. For a partially immersed body the condition of constant pressure at the free surface can be linearized. The resulting linear boundary-value problem for the velocity potential is the Neumann-Kelvin problem. The two-dimensional Neumann-Kelvin problem is studied for the half-immersed circular cylinder by Ursell. Maruo introduced a slender body approach to simplify the Neumann-Kelvin problem in such a way that the integral equation which determines the singularity distribution over the hull surface can be solved by a marching procedure of step by step integration starting at bow. In the present pater for the two-dimensional Neumann-Kelvin problem, it has been suggested that any solution of the problem must have singularities in the corners between the body surface and free surface. There can be infinitely many solutions depending on the singularities in the coroners.

  • PDF

Dose verification for Gated Volumetric Modulated Arc Therapy according to Respiratory period (호흡연동 용적변조 회전방사선치료에서 호흡주기에 따른 선량전달 정확성 검증)

  • Jeon, Soo Dong;Bae, Sun Myung;Yoon, In Ha;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • Purpose : The purpose of this study is to verify the accuracy of dose delivery according to the patient's breathing cycle in Gated Volumetric Modulated Arc Therapy Materials and Methods : TrueBeam STxTM(Varian Medical System, Palo Alto, CA) was used in this experiment. The Computed tomography(CT) images that were acquired with RANDO Phantom(Alderson Research Laboratories Inc. Stamford. CT, USA), using Computerized treatment planning system(Eclipse 10.0, Varian, USA), were used to create VMAT plans using 10MV FFF with 1500 cGy/fx (case 1, 2, 3) and 220 cGy/fx(case 4, 5, 6) of doserate of 1200 MU/min. The regular respiratory period of 1.5, 2.5, 3.5 and 4.5 sec and the patients respiratory period of 2.2 and 3.5 sec were reproduced with the $QUASAR^{TM}$ Respiratory Motion Phantom(Modus Medical Devices Inc), and it was set up to deliver radiation at the phase mode between the ranges of 30 to 70%. The results were measured at respective respiratory conditions by a 2-Dimensional ion chamber array detector(I'mRT Matrixx, IBA Dosimetry, Germany) and a MultiCube Phantom(IBA Dosimetry, Germany), and the Gamma pass rate(3 mm, 3%) were compared by the IMRT analysis program(OmniPro I'mRT system software Version 1.7b, IBA Dosimetry, Germany) Results : The gamma pass rates of Case 1, 2, 3, 4, 5 and 6 were the results of 100.0, 97.6, 98.1, 96.3, 93.0, 94.8% at a regular respiratory period of 1.5 sec and 98.8, 99.5, 97.5, 99.5, 98.3, 99.6% at 2.5 sec, 99.6, 96.6, 97.5, 99.2, 97.8, 99.1% at 3.5 sec and 99.4, 96.3, 97.2, 99.0, 98.0, 99.3% at 4.5 sec, respectively. When a patient's respiration was reproduced, 97.7, 95.4, 96.2, 98.9, 96.2, 98.4% at average respiratory period of 2.2 sec, and 97.3, 97.5, 96.8, 100.0, 99.3, 99.8% at 3.5 sec, respectively. Conclusion : The experiment showed clinically reliable results of a Gamma pass rate of 95% or more when 2.5 sec or more of a regular breathing period and the patient's breathing were reproduced. While it showed the results of 93.0% and 94.8% at a regular breathing period of 1.5 sec of Case 5 and 6, it could be confirmed that the accurate dose delivery could be possible on the most respiratory conditions because based on the results of 100 patients's respiratory period analysis as no one sustained a respiration of 1.5 sec. But, pretreatment dose verification should be precede because we can't exclude the possibility of error occurrence due to extremely short respiratory period, also a training at the simulation and careful monitoring are necessary for a patient to maintain stable breathing. Consequently, more reliable and accurate treatments can be administered.

Evaluating efficiency of Coaxial MLC VMAT plan for spine SBRT (Spine SBRT 치료시 Coaxial MLC VMAT plan의 유용성 평가)

  • Son, Sang Jun;Mun, Jun Ki;Kim, Dae Ho;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.313-320
    • /
    • 2014
  • Purpose : The purpose of the study is to evaluate the efficiency of Coaxial MLC VMAT plan (Using $273^{\circ}$ and $350^{\circ}$ collimator angle) That the leaf motion direction aligned with axis of OAR (Organ at risk, It means spinal cord or cauda equine in this study.) compare to Universal MLC VMAT plan (using $30^{\circ}$ and $330^{\circ}$ collimator angle) for spine SBRT. Materials and Methods : The 10 cases of spine SBRT that treated with VMAT planned by Coaxial MLC and Varian TBX were enrolled. Those cases were planned by Eclipse (Ver. 10.0.42, Varian, USA), PRO3 (Progressive Resolution Optimizer 10.0.28) and AAA (Anisotropic Analytic Algorithm Ver. 10.0.28) with coplanar $360^{\circ}$ arcs and 10MV FFF (Flattening filter free). Each arc has $273^{\circ}$ and $350^{\circ}$ collimator angle, respectively. The Universal MLC VMAT plans are based on existing treatment plans. Those plans have the same parameters of existing treatment plans but collimator angle. To minimize the dose difference that shows up randomly on optimizing, all plans were optimized and calculated twice respectively. The calculation grid is 0.2 cm and all plans were normalized to the target V100%=90%. The indexes of evaluation are V10Gy, D0.03cc, Dmean of OAR (Organ at risk, It means spinal cord or cauda equine in this study.), H.I (Homogeneity index) of the target and total MU. All Coaxial VMAT plans were verified by gamma test with Mapcheck2 (Sun Nuclear Co., USA), Mapphan (Sun Nuclear Co., USA) and SNC patient (Sun Nuclear Co., USA Ver 6.1.2.18513). Results : The difference between the coaxial and the universal VMAT plans are follow. The coaxial VMAT plan is better in the V10Gy of OAR, Up to 4.1%, at least 0.4%, the average difference was 1.9% and In the D0.03cc of OAR, Up to 83.6 cGy, at least 2.2 cGy, the average difference was 33.3 cGy. In Dmean, Up to 34.8 cGy, at least -13.0 cGy, the average difference was 9.6 cGy that say the coaxial VMAT plans are better except few cases. H.I difference Up to 0.04, at least 0.01, the average difference was 0.02 and the difference of average total MU is 74.1 MU. The coaxial MLC VMAT plan is average 74.1 MU lesser then another. All IMRT verification gamma test results for the coaxial MLC VMAT plan passed over 90.0% at 1mm / 2%. Conclusion : Coaxial MLC VMAT treatment plan appeared to be favorable in most cases than the Universal MLC VMAT treatment planning. It is efficient in lowering the dose of the OAR V10Gy especially. As a result, the Coaxial MLC VMAT plan could be better than the Universal MLC VMAT plan in same MU.

Performance Evaluation of WWTP Based on Reliability Concept (신뢰성에 기초한 하수처리장 운전효율 평가)

  • Lee, Doo-Jin;Sun, Sang-Woon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.348-356
    • /
    • 2007
  • Statistical and probabilistic method was used in the analysis of data, which is the most effective one in describing the various natures, and the methodology relating the results with the design was developed. Influents and effluents of three treatment plants were analyzed and the focus was made on BOD, COD, SS, IN, TP The fluctuations of influent such as BOD, COD, SS were extremely large and their standard deviations(st.dev) were more than 10 mg/L. but those of TN, TP were small; the st.dev was 6.6 mg/L for TN, 0.6 mg/L for TP, respectively. But, effluent concentration showed consistent pattern regardless of the influent fluctuations, the st.dev was ranged between 0.28 and 4.48 mg/L. Effluent distributional characteristics were as follows; BOD, COD were distributed normally, but SS, TN, and TP, log-normally; unsymmetric and skewed to the right. The coefficient of reliability(COR) based on the results of statistics of data was introduced to evaluate the process performance an4 to reflect the process performance to the process design. The coefficient of reliability relates the design value(the goal) with the standards and it can be used in operating treatment facilities under a certain reliability level and/or in evaluating the reliability of the treatment facilities on operation. Each treated water quality of effluent showed the half of water quality standards in the level of 50% percentile and all treatment plant was achieved 100% probability of water quality standards. It was concluded that the variability of the process performance should be reflected to the design procedure and the standards through the analysis based on the statistics and the probability.

Evaluation of Plasma D-dimer Concentration in Cats with Hypertrophic Cardiomyopathy (비대성 심근증이 있는 고양이에서 혈장 D-dimer 농도의 평가)

  • Kim, Tae-Young;Han, Suk-Hee;Choi, Ran;Hyun, Changbaig
    • Journal of Veterinary Clinics
    • /
    • v.31 no.2
    • /
    • pp.85-89
    • /
    • 2014
  • Arterial thromboembolism (ATE) is a common and fatal complication of hypertrophic cardiomyopathy (HCM) in cats. Therefore in this study, we evaluated the hypercoagulability (using plasma concentration of D-dimer) in HCM cats with different stage of heart failure and left atrial enlargement and also investigated the any correlation with echocardiographic indices (including left free wall thickness at diastole, interventricular septal thickness at diastole, LA to Ao ratio, heart failure stage, existence of systolic anterior motion of mitral valve). The median plasma D-dimer concentration in this study population was $0.51{\pm}0.70$ (range 0 to 2.50) ug/mL in the control group, $1.47{\pm}1.29$ (range 0.3 to 5.79) ug/mL in the HCM group, $1.48{\pm}1.65$ (range 0.3 to 5.79) ug/mL in the ISACHC I group, $1.62{\pm}0.4$ (range 1.31 to 2.07) ug/mL in the ISACHC II group, $1.36{\pm}0.91$ (range 0.3 to 2.31) ug/mL in the ISACHC III group, $1.90{\pm}1.60$ (range 0.3 to 5.79) ug/mL in the cat with LA dilation, $1.72{\pm}0.72$ (range 0.6 to 2.31) ug/mL in cats with SEC-T, $1.19{\pm}0.70$ (range 0.3 to 2.31) ug/mL in the cats with SAM, and $1.63{\pm}0.80$ (range 0.6 to 2.31) ug/mL in the cats with ATE. Our study found the median and mean concentration of plasma D-dimer was higher in cat with HCM, ATE, SECT and SAM and clearly provides evidence of hypercoagulability in cats with HCM, although the severity was not correlated to the dilation of LA and the presence of heart failure. This is the first study evaluating the hypercoagulability in cats with HCM in Korea.