• Title/Summary/Keyword: Free Boundaries

Search Result 189, Processing Time 0.028 seconds

Reverse Engineering of Compound Surfaces Using Boundary Detection Method

  • Cho, Myeong-Woo;Seo, Tae-Il;Kim, Jae-Doc;Kwon, Oh-Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1104-1113
    • /
    • 2000
  • This paper proposes an efficient reverse engineering technique for compound surfaces using a boundary detection method. This approach consists in extracting geometric edge information using a vision system, which can be used in order to drastically reduce geometric errors in the vicinity of compound surface boundaries. Through the image-processing technique and the interpolation process, boundaries are reconstructed by either analytic curves (e. g. circle, ellipse, line) or parametric curves (B-spline curve). In other regions, except boundaries, geometric data are acquired on CMM as points inspected using a touch type probe, and then they are interpolated on several surfaces using a B-spline skinning method. Finally, the boundary edge and the skinned surfaces are combined to reconstruct the final compound surface. Through simulations and experimental works, the effectiveness of the proposed method is confirmed.

  • PDF

Time-dependent Double Obstacle Problem Arising from European Option Pricing with Transaction Costs

  • Jehan, Oh;Namgwang, Woo
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.615-640
    • /
    • 2022
  • In this paper, we investigate a time-dependent double obstacle problem associated with the model of European call option pricing with transaction costs. We prove the existence and uniqueness of a W2,1p,loc solution to the problem. We then characterize the behavior of the free boundaries in terms of continuity and values of limit points.

Free Surface Oscillation in Sloshing Problem Predicted with ALE Method

  • Ushijima Satoru
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.11-22
    • /
    • 1999
  • A numerical prediction method has been proposed to predict non-linear free surface oscillation in a three-dimensional container. The fluid motions are numerically predicted with Navier-Stokes equations discretized in a Lagrangian scheme with sufficient numerical accuracy. The profile of a free surface is precisely represented with three-dimensional body-fitted coordinates (BFC), which are regenerated in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) formulation. In order to confirm the reliability of the computational method, it was firstly applied to three-dimensional flows within complicated-shaped rigid boundaries, such as curved pipes and ducts. Than it was applied to benchmark computations related to free surface oscillations. Following these basic verifications, non-linear sloshings in a cylindrical tank and transitions from sloshing to swirling motions were numerically predicted. Throughout these computations, the applicability of the present computational method has been confirmed and some of the predicted free surface motions were visualized as sequential images and animations to understand their dynamic futures.

  • PDF

Nonlinear Force-Free Field Reconstruction Based on MHD Relaxation Method

  • Kang, Jihye;Inoue, Satoshi;Magara, Tetsuya;An, Jun-Mo;Lee, Hwanhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.72.1-72.1
    • /
    • 2014
  • In this study, we extrapolate a nonlinear force-free field (NLFFF) from an observed photospheric magnetic field to understand the three-dimensional (3D) coronal magnetic field producing a huge solar flare. The purpose of this study is to develop a NLFFF extrapolation code based on the so-called MHD relaxation method and check how accurately our model reconstructs a coronal field. Furthermore, we apply it to the photospheric magnetic field obtained by Helioseismic and Magnetic Imager (HMI) on board Solar Dynamics Observatory (SDO) to reconstruct a 3D magnetic structure. We first investigate factors in controlling the accuracy of our NLFFF code by using a semi-analytical solution obtained by Low & Lou (1990). To extend a work done by Inoue et al. (2014), we apply various boundary conditions at the side and top boundaries in order to make our solution close to a realistic solution. As a consequence, our solution has a good accuracy when three components of a reference field are all fixed at the boundaries. Furthermore, it is also found that our solution is well matched to the Low & Lou solution in the central area of a simulation domain when the three components of a potential field are fixed at side and top boundaries (this approach is close to a realistic solution). Finally, we present the 3D coronal magnetic field producing an X 1.5-class flare in the active region 11166 through the extrapolation from SDO/HMI.

  • PDF

Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells

  • Li, Haichao;Pang, Fuzhen;Du, Yuan;Gao, Cong
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.163-180
    • /
    • 2019
  • A semi analytical method is employed to analyze free vibration characteristics of uniform and stepped functionally graded circular cylindrical shells under complex boundary conditions. The analytical model is established based on multi-segment partitioning strategy and first-order shear deformation theory. The displacement functions are handled by unified Jacobi polynomials and Fourier series. In order to obtain continuous conditions and satisfy complex boundary conditions, the penalty method about spring technique is adopted. The solutions about free vibration behavior of functionally graded circular cylindrical shells were obtained by approach of Rayleigh-Ritz. To confirm the dependability and validity of present approach, numerical verifications and convergence studies are conducted on functionally graded cylindrical shells under various influencing factors such as boundaries, spring parameters et al. The present method apparently has rapid convergence ability and excellent stability, and the results of the paper are closely agreed with those obtained by FEM and published literatures.

Application of the Cost-Distance Measures for Designating Zone Boundaries in DIF Zoning

  • Choi, Joon Young;Choei, Nae Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.3-13
    • /
    • 2016
  • The development impact fee (DIF) zoning is used to adequately provide the pre-planned urban infrastructures in those urban and regional sectors where significant urban sprawl has already taken place followed by the rapid population growth. The infrastructure installation fees are levied to those landowners whose properties belong to the DIF zone in which they enjoy the direct benefits that accrue from the installed infrastructures. While the law is deemed to be equitable in that the actual beneficiaries pay for their benefits, it is required to designate the zone boundaries accurately and consistently since they are the very dividers that differentiate the legitimate fee-payers and the free-riders. This study, especially, tries to test a seemingly advanced alternative, so-called the cost-weighted distance measure, as a potential candidate to replace the current air-distance measures to designate the zone boundaries. The statistics indicate that the coefficient of variation for major indices spread from 11.75 to 35.6 in the case of the latter method, it only ranges from 0.21 to 0.76 in the case of the former. The zonal outcomes also show much higher consistency in their shapes. It is hoped, in this context, that the study findings could possibly be adopted in the future research efforts expected soon to amend and improve the current DIF zoning law.

On the Vibration Analysis of the Floating Elastic Body Using the Boundary Integral Method in Combination with Finite Element Method

  • K.T.,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.19-36
    • /
    • 1987
  • In this research the coupling problem between the elastic structure and the fluid, specially the hydroelastic harmonic vibration problem, is studied. In order to couple the domains, i.e., the structural domain and the fluid domain, the boundary integral method(direct boundary integral formulation) is used in the fluid domain in combination with the finite element method for the structure. The boundary integral method has been widely developed to apply it to the hydroelastic vibration problem. The hybrid boundary integral method using eigenfunctions on the radiation boundaries and the boundary integral method using the series form image-functions to replace the even bottom and free surface boundaries in case of high frequencies have been developed and tested. According to the boundary conditions and the frequency ranges the different boundary integral methods with the different idealizations of the fluid boundaries have been studied. Using the same interpolation functions for the pressure distribution and the displacement the two domains have been coupled and using Hamilton principle the solution of the hydroelastic have been obtained through the direct minimizing process. It has become evident that the finite-boundary element method combining with the eigenfunction or the image-function method give good results in comparison with the experimental ones and the other numerical results by the finite element method.

  • PDF

Free Vibration Analysis of Arbitrarily Shaped Plates with Free Edges Using Non-dimensional Dynamic Influence Functions: the case that straight and curved boundaries are mixed (무차원 동영향 함수를 이용한 자유단 경계를 가진 임의 형상 평판의 진동해석 : 직선 및 곡선 경계가 혼합된 경우)

  • Choi, Jang-Hoon;Kang, Sang-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.534-537
    • /
    • 2005
  • Free Vibration Analysis using Non-dimensional Dynamic Influence Function (NDIF) is extended to arbitrarily shaped plates including polygonal plates. Since the corners of polygonal plates have indefinite normal directions and additional boundary conditions related to a twisting moment at a corner along with moment and shear force zero conditions, it is not easy to apply the NDIF method to polygonal plates wi th the free boundary condition. Moreover, owing to the fact that the local polar coordinate system, which has been introduced for free plates with smoothly varying edges, cannot be employed for the straight edges of the polygonal plates, a new coordinate system is required for the polygonal plates. These problems are solved by developing the new method of modifying a corner into a circular arc and setting the normal direction at the corner to an average value of normal direct ions of two edges adjacent to the corner. Some case studies for plates with various shapes show that the proposed method gives credible natural frequencies and mode shapes for various polygons that agree well with those by an exact method or FEM (ANSYS).

  • PDF

Reinforcement learning Speedup method using Q-value Initialization (Q-value Initialization을 이용한 Reinforcement Learning Speedup Method)

  • 최정환
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.13-16
    • /
    • 2001
  • In reinforcement teaming, Q-learning converges quite slowly to a good policy. Its because searching for the goal state takes very long time in a large stochastic domain. So I propose the speedup method using the Q-value initialization for model-free reinforcement learning. In the speedup method, it learns a naive model of a domain and makes boundaries around the goal state. By using these boundaries, it assigns the initial Q-values to the state-action pairs and does Q-learning with the initial Q-values. The initial Q-values guide the agent to the goal state in the early states of learning, so that Q-teaming updates Q-values efficiently. Therefore it saves exploration time to search for the goal state and has better performance than Q-learning. 1 present Speedup Q-learning algorithm to implement the speedup method. This algorithm is evaluated. in a grid-world domain and compared to Q-teaming.

  • PDF

A Study on the Performance of Absorbing Boundaries for Wave propagation Using Finite Element Method (유한요소법에서의 파진행 문제를 위한 흡수경계 성능에 관한 연구)

  • 김희석;이종세
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.413-420
    • /
    • 2003
  • In this paper an analytical study is carried out to examine the effectiveness of absorbing boundaries using dashpot. Validity of the absorbing boundary conditions suggested by Lysmer-Kuhlemeyer and White et al. is investigated by adopting the solution of Miller and Pursey. The Miller and Pursey's problem is then numerically simulated using the finite element method. The absorption ratios are calculated by comparing the displacements at the absorbing boundary to those at the free field without the absorbing boundary. The numerical verification is carried out through comparison of displacement at the boundary.

  • PDF