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Abstract. In this paper, we investigate a time-dependent double obstacle problem asso-

ciated with the model of European call option pricing with transaction costs. We prove

the existence and uniqueness of a W
2,1

p,loc
solution to the problem. We then characterize

the behavior of the free boundaries in terms of continuity and values of limit points.

1. Introduction

This paper concerns a double obstacle problem arising from the model of Euro-
pean call option pricing with transaction costs. Since transaction costs have been
generally reduced and will be reduced in many countries (see [8, page 187] and [10,
page 535]), we substitute the time-dependent transaction costs λ(t) and µ(t) for the
usual λ and µ which are a constant fraction of the purchase price of the stock. To
be specific, we consider the case that λ(t) and µ(t) diminish over time and analyze
the value Q(y, S, t) satisfying

(1.1)





min
{
∂yQ+ γ(1 + λ̄(t))SQer(T−t),−

(
∂yQ+ γ(1− µ̄(t))SQer(T−t)

)
,

∂tQ+ σ2

2 S2∂SSQ+ αS∂SQ
}
= 0, y ∈ R, S > 0, 0 ≤ t < T,

Q(y, S, T ) = exp{−γc(y, S)},

where

c(y, S) =

{
(1 + λ0)yS, if y < 0,

(1− µ0)yS, if y ≥ 0,
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and σ > 0, α > r ≥ 0, γ > 0 are constants. Also, we define

λ̄(t) := (λ0 + 1)eq(T−t) − 1, µ̄(t) := (µ0 + 1)eq̄(T−t) − 1,

where 0 ≤ λ̄(t), µ̄(t) < 1 for all 0 ≤ t ≤ T , λ0 := λ̄(T ), µ0 := µ̄(T ), and the
range of q and q̄ is to be chosen later. For the double obstacle problem arising from
European option pricing with constant transaction costs, we refer the reader to [4].

Since (1.1) is a backward parabolic problem, we transform it to a forward
parabolic problem. Letting τ = T − t, we have

(1.2)





max {− (∂yQ+ γ(1 + λ(τ))SQerτ ) , ∂yQ+ γ(1− µ(τ))SQerτ ,

∂τQ− σ2

2 S2∂SSQ− αS∂SQ
}
= 0, y ∈ R, S > 0, 0 < τ 6 T,

Q(y, S, 0) = exp{−γc(y, S)},

where λ(τ) = (λ0 + 1)eqτ − 1, µ(τ) = (µ0 + 1)eq̄τ − 1.
Using the transformation described in Section 2, we obtain the time-dependent

double obstacle problem:

(1.3)





∂τV − LzV = 0, if 1− µ(τ) < V < 1 + λ(τ);

∂τV − LzV ≤ 0, if V = 1 + λ(τ);

∂τV − LzV ≥ 0, if V = 1− µ(τ);

V (z, 0) =

{
1 + λ0, if z < 0,

1− µ0, if z ≥ 0,

where

(1.4)

LzV := − 1

γ

∂

∂z
(LV ∗)

=
σ2

2
z2∂zzV +

(
σ2 + α− r

)
z∂zV + (α− r)V − γσ2zV (z∂zV + V ) .

There are various studies on the double obstacle problems. Yang and Yi [13]
studied the double obstacle problem associated with European option pricing with
transaction costs. Dai and Yi [3] studied the free boundaries of the parabolic dou-
ble obstacle problem arising from the optimal investment problem of a Constant
Relative Risk Aversion (CRRA) investor who faces proportional transaction costs.
Furthermore, Chen et al [2] analyzed the double obstacle problem related to a time-
dependent Hamilton-Jacobi-Bellman equation with gradient constraints. However,
few attempts have been made to analyze the time-dependent parabolic double ob-
stacle problem employing the variational inequality approach. Besides the papers
mentioned above, there is a vast literature related to the problem with transaction
costs, see for instance, [1, 6] and the references therein.

The aim of the paper is to characterize the free boundaries of problem (1.3).
Indeed, we obtain the existence and uniqueness of a W

2,1
p,loc solution for (1.3) using a
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penalty method. We also show the limits of the free boundaries and the continuity
of the free boundaries, which is motivated by [12] and [13]. The main difficulty in
carrying out this construction is that free boundaries are not always monotonic. To
overcome this problem, we employ a transformation y = x+ k(τ), v̄(y, τ) = v(x, τ),
where k(τ) is chosen later. This guarantees that the free boundaries are monotonic.
Hence, we can see the continuity of the free boundaries.

The present paper is organized as follows. In Section 2, we prove the existence
and uniqueness of a W

2,1
p,loc solution for (1.3). In Section 3, we analyze the behavior

of two free boundaries. In Section 4, we establish the equivalence between the
double obstacle problem (1.3) and the original problem (1.2).

2. The Existence and Uniqueness of Solution to the Problem (1.3)

In this section, we show the existence and uniqueness of a W
2,1
p,loc solution to the

problem (1.3). First, we prove that the problem (1.2) implies the problem (1.3).
Since a positive value Q can be inferred from the reality of the setup, or from results
in the paper, we let U = lnQ. Then U satisfies the following equations:

(2.1)





max {− (∂yU + γ(1 + λ(τ))Serτ ) , ∂yU + γ(1− µ(τ))Serτ ,

∂τU − σ2

2 S2∂SSU − αS∂SU − σ2

2 (S∂SU)
2
}
= 0,

y ∈ R, S > 0, 0 < τ 6 T,

U(y, S, 0) = −γc(y, S).

Also, letting z = erτyS and V ∗(z, τ) = U(y, S, τ) shows the equalities:

∂yU = erτS∂zV
∗, ∂SU = erτy∂zV

∗,(2.2)

∂τU = ∂τV
∗ + rz∂zV

∗, ∂SSU = e2rτy2∂zzV
∗.(2.3)

Using equalities (2.2) and (2.3), we have

∂yU(y, S, τ) + γ(1 + λ(τ))Serτ = erτS [∂zV
∗(z, τ) + γ(1 + λ(τ))] ,

∂yU(y, S, τ) + γ(1− µ(τ))Serτ = erτS [∂zV
∗(z, τ) + γ(1− µ(τ))] ,

∂τU − σ2

2
S2∂SSU − αS∂SU − σ2

2
(S∂SU)

2
= ∂τV

∗ − LV ∗,

where

(2.4) LV ∗ =
σ2

2
z2∂zzV

∗ + (α− r)z∂zV
∗ +

σ2

2
(z∂zV

∗)2.

Therefore, V ∗ = V ∗(z, τ) satisfies

(2.5)





max {− (∂zV
∗ + γ(1 + λ(τ))) , ∂zV

∗ + γ(1− µ(τ)), ∂τV
∗ − LV ∗} = 0,

z ∈ R, 0 < τ 6 T,

V ∗(z, 0) =

{
−γ(1 + λ0)z, z < 0,

−γ(1− µ0)z, z ≥ 0.
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Differentiating with respect to z in (2.4), we get

∂

∂z
(LV ∗) =

σ2

2
z2∂zz (∂zV

∗) +
(
α− r + σ2

)
z∂z (∂zV

∗) + (α− r) (∂zV
∗)

+ σ2z (∂zV
∗) (z∂z (∂zV

∗) + (∂zV
∗)) .

If we denote

(2.6) V (z, τ) = − 1

γ
∂zV

∗(z, τ),

then we have

LzV := − 1

γ

∂

∂z
(LV ∗)

=
σ2

2
z2∂zzV +

(
σ2 + α− r

)
z∂zV + (α− r)V − γσ2zV (z∂zV + V ) ,

which is equivalent to (1.4). The proof is completed by showing that (2.5) implies
(1.3); we do this in Section 4.

Now, note that the operator Lz is degenerate at z = 0. Using the Fichera
Theorem from [9], the problem (1.3) can be divided into two parts: the problems
in the domains {z < 0} and {z > 0} independently. Furthermore, we see that
V (z, τ) = 1 + λ(τ) is the solution of problem (1.3) in the domain {z < 0}. Indeed,

(∂τ − Lz)[1 + λ(τ)] = λ′(τ) − (α− r)(1 + λ(τ)) + γσ2z(1 + λ(τ))2

= (q − (α− r))(1 + λ(τ)) + γσ2z(1 + λ(τ))2 ≤ 0,

provided that 0 ≤ q ≤ α − r. From now on, we only consider the problem (1.3) in
the domain {z > 0}. Let z = ex and v(x, τ) = V (z, τ). Then v(x, τ) satisfies

(2.7)





∂τv − Lxv = 0, if 1− µ(τ) < v < 1 + λ(τ), x ∈ R, 0 < τ ≤ T,

∂τv − Lxv ≥ 0, if v = 1− µ(τ), x ∈ R, 0 < τ ≤ T,

∂τv − Lxv ≤ 0, if v = 1 + λ(τ), x ∈ R, 0 < τ ≤ T,

v(x, 0) = 1− µ0, x ∈ R,

where

(2.8) Lxv =
σ2

2
∂xxv +

(
α− r +

σ2

2

)
∂xv + (α− r)v − γσ2exv (∂xv + v) .

Since the domain is unbounded, we confine our attention to (1.3) in a bounded
domain (−n, n)× (0, T ). In order to do so, set ΩT = R× (0, T ] and Ωn

T = (−n, n)×
(0, T ]. Let us consider the following problem in Ωn

T :

(2.9)





∂τvn − Lxvn = 0, if 1− µ(τ) < vn < 1 + λ(τ) and (x, τ) ∈ Ωn
T ;

∂τvn − Lxvn ≥ 0, if vn = 1− µ(τ) and (x, τ) ∈ Ωn
T ;

∂τvn − Lxvn ≤ 0, if vn = 1 + λ(τ) and (x, τ) ∈ Ωn
T ;

∂xvn(x, τ) = 0, x = ±n, 0 ≤ τ ≤ T ;

vn(x, 0) = 1− µ0, −n ≤ x ≤ n.
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Lemma 2.1. For any fixed n ∈ N, there exists a unique solution vn ∈ C(Ω̄n
T ) ∩

W 2.1
p (Ωn

T ) to the problem (2.9), where 1 < p < +∞. Moreover,

(2.10) −vn ≤ ∂xvn ≤ 0 and ∂τvn ≥ −µ′(τ) a.e. in Ωn
T .

Proof. We consider a penalty approximation of the problem (2.9):

(2.11)





∂τvε,n − Lxvε,n + βε (vε,n − (1 − µ(τ)))
−βε (−vε,n + (1 + λ(τ))) = 0 in Ωn

T ,

∂xvε,n(x, τ) = 0, x = ±n, 0 ≤ τ ≤ T,

vε,n(x, 0) = 1− µ0, −n ≤ x ≤ n,

where

(2.12)

βε(t) ∈ C2(−∞,+∞);

βε(t) ≤ 0, β′
ε(t) ≥ 0, β′′

ε (t) ≤ 0, ∀t ∈ R;

βε(0) = −C0, C0 ≥ max{γσ2en(1− µ0)
2 + λ′(0), (α− r)(1 + λ(T ))},

and moreover,

lim
ε→0+

βε(t) =

{
0, t > 0,

−∞, t < 0.

For simplicity, we let βε(·) := βε(vε,n − 1+µ(τ)) and βε(··) := βε(−vε,n +1+λ(τ))
when no confusion can arise.

Following standard procedure, we can use the Leray-Schauder fixed point the-
orem, we get the existence and uniqueness of the solution of (2.11). Next, we show
that 1− µ(τ) ≤ vε,n ≤ 1 + λ(τ). We define the operator T by

Tv := ∂τv − Lxv + βε (v − (1− µ(τ))) − βε (−v + (1 + λ(τ))) .

From the definition of C0, we obtain

T[1 − µ(τ)]

= −µ′(τ) − (α− r)(1 − µ(τ)) + γσ2ex(1− µ(τ))2 + βε(0)− βε(µ(τ) + λ(τ))

= −µ′(τ) − (α− r)(1 − µ(τ)) + (γσ2ex(1 − µ(τ))2 − C0)

≤ −µ′(0)− (α− r)(1 − µ(T ))− λ′(0)

≤ 0

for sufficiently small ε. Combining the above inequality and the initial and boundary
conditions, we get 1− µ(τ) ≤ vε,n by the comparison principle. Similarly, from the
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definition of C0, we have

T[1 + λ(τ)]

= λ′(τ)− (α − r)(1 + λ(τ)) + γσ2ex(1 + λ(τ))2 + βε(µ(τ) + λ(τ)) − βε(0)

= λ′(τ) + γσ2ex(1 + λ(τ))2 + (C0 − (α− r)(1 + λ(τ)))

≥ λ′(0) + γσ2e−n(1 + λ0)
2

≥ 0

for sufficiently small ε, which proves vε,n ≤ 1 + λ(τ).

Next, we prove −vε,n ≤ ∂xvε,n ≤ 0. To prove this, we differentiate Tvε,n = 0
with respect to x, and let W := ∂xvε,n. Then W satisfies

(2.13)





∂τW − σ2

2 ∂xxW −
(
α− r + σ2

2

)
∂xW − (α− r)W

+γσ2ex
[
vε,n∂xW + 3vε,nW +W 2

]
+ β′

ε(·)W + β′
ε(··)W

= −γσ2exv2ε,n ≤ 0, in Ωn
T ,

W (x, τ) = 0, on ∂pΩ
n
T .

Using the maximum principle, we get ∂xvε,n ≤ 0 in Ωn
T .

On the other hand, we define the operator T̂ by

T̂w := ∂τw − σ2

2
∂xxw −

(
α− r +

σ2

2

)
∂xw − (α− r)w

+ γσ2ex
[
vε,n∂xw + 3vw + w2

]
+ β′

ε(·)w + β′
ε(··)w.

Then, we have

(2.14) T̂[W ] = −γσ2exv2ε,n.

To make calculations easier, we will use two properties related to the operator T̂:
For each w1 = w1(x, τ) and w2 = w2(x, τ),

1. T̂[w1 + w2] = T̂[w1] + T̂[w2] + 2γσ2exw1w2.

2. T̂[kw1] = kT̂[w1] + (k2 − k)γσ2exw2
1 for each k ∈ R.

Set Ŵ := W + vε,n. From the equation (2.14), we have

T̂[Ŵ − vε,n] = −γσ2exv2ε,n.

Using the property 1 with respect to T̂, we obtain

T̂[Ŵ ] + T̂[−vε,n] + 2γσ2exŴ (−vε,n) = −γσ2exv2ε,n.
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Using the property 2 with respect to T̂, we get

T̂[Ŵ ] = T̂[vε,n] + 2γσ2exŴvε,n − 3γσ2exv2ε,n

= ∂τvε,n − σ2

2
∂xxvε,n −

(
α− r +

σ2

2

)
∂xvε,n − (α− r)vε,n

+ γσ2ex
[
vε,n∂xvε,n + 3v2ε,n + v2ε,n

]
+ β′

ε(·)vε,n + β′
ε(··)vε,n

+ 2γσ2exŴvε,n − 3γσ2exv2ε,n

= ((∂τ − Lx)[vε,n]− βε(·) + βε(··)) + 3γσ2exv2ε,n + β′
ε(·)vε,n + β′

ε(··)vε,n
+ 2γσ2exŴvε,n − 3γσ2exv2ε,n

= −βε(·) + βε(··) + β′
ε(·)vε,n + β′

ε(··)vε,n + 2γσ2exŴvε,n.

This gives

T̂[Ŵ ]− T̂[0] = −βε(·) + βε(··) + β′
ε(·)vε,n + β′

ε(··)vε,n.

We claim that T̂[Ŵ ]− T̂[0] ≥ 0. From the definition of βε, we get

(2.15) βε(··)− βε(·) = β′
ε(η)(−2vε,n + 1 + λ(τ) + 1− µ(τ)),

where η is a real number between −vε,n + 1 + λ(τ) and vε,n + 1− µ(τ). There are
only the following three possibilities:

(i) If vε,n = 1+λ(τ)+1−µ(τ)
2 , then −βε(·) + βε(··) = 0. It follows that

T̂[Ŵ ]− T̂[0] ≥ 0.

(ii) If vε,n >
1+λ(τ)+1−µ(τ)

2 , then

β′
ε(vε,n − 1 + µ(τ)) ≤ β′

ε(η) ≤ β′
ε(−vε,n + 1 + λ(τ))

by the monotonicity of β′
ε. Hence,

T̂[Ŵ ]− T̂[0]

= β′
ε(η)(−2vε,n + 1 + λ(τ) + 1− µ(τ)) + γσ2exv2ε,n + β′

ε(·)vε,n + β′
ε(··)vε,n

≥ β′
ε(··)(−2vε,n + 1 + λ(τ) + 1− µ(τ)) + γσ2exv2ε,n + β′

ε(·)vε,n + β′
ε(··)vε,n

= β′
ε(··)(−vε,n + 1 + λ(τ) + 1− µ(τ)) + γσ2exv2ε,n + β′

ε(·)vε,n
≥ 0.

(iii) If vε,n <
1+λ(τ)+1−µ(τ)

2 , then

β′
ε(vε,n − 1 + µ(τ)) ≥ β′

ε(η) ≥ β′
ε(−vε,n + 1 + λ(τ))
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by the monotonicity of β′
ε. Hence,

T̂[Ŵ ]− T̂[0]

= β′
ε(η)(−2vε,n + 1 + λ(τ) + 1− µ(τ)) + γσ2exv2ε,n + β′

ε(·)vε,n + β′
ε(··)vε,n

≥ β′
ε(··)(−2vε,n + 1 + λ(τ) + 1− µ(τ)) + γσ2exv2ε,n + β′

ε(·)vε,n + β′
ε(··)vε,n

= β′
ε(··)(−vε,n + 1 + λ(τ) + 1− µ(τ)) + γσ2exv2ε,n + β′

ε(·)vε,n
≥ 0.

By (i), (ii) and (iii), the proof of the claim is complete.
Since {

Ŵ (x, 0) = 1− µ0, −n ≤ x ≤ n,

Ŵ (x, τ) = v(x, τ), x = ±n, τ ∈ [0, T ],

from the comparison principle, we see that Ŵ (x, τ) ≥ 0 in Ωn
T , and ∂xvε,n+vε,n ≥ 0

is proved.
Next, we claim that ∂τvε,n ≥ −µ′(τ). Let w = ∂τvε,n and w̃ = w + µ′(τ).

Differentiating (2.11) with respect to τ , we obtain

(2.16)





∂τw − σ2

2 ∂xxw −
(
α− r + σ2

2

)
∂xw − (α− r)w

+γσ2ex [vε,n∂xw + (∂xvε,n + 2vε,n)w]
+β′

ε(·)(w + µ′(τ)) − β′
ε(··)(−w + λ′(τ)) = 0, in Ωn

T ,

∂xw(x, τ) = 0, x = ±n, 0 ≤ τ ≤ T,

w(x, 0) = (α− r)(1 − µ0)−
[
γσ2(1 − µ0)

2ex + βε(0)
]
≥ 0

by the definition of βε. For simplicity of notation, we let T̃ stand for the operator:

T̃w := ∂τw − σ2

2
∂xxw −

(
α− r +

σ2

2

)
∂xw − (α− r)w

+ γσ2ex [vε,n∂xw + (∂xvε,n + 2vε,n)w] + β′
ε(·)w + β′

ε(··)w.

Then, we have
T̃[w̃ − µ′(τ)] = −β′

ε(·)µ′(τ) + β′
ε(··)λ′(τ).

From the linearity of T̃, we get

T̃[w̃] = T̃[µ′(τ)] − β′
ε(·)µ′(τ) + β′

ε(··)λ′(τ).

= µ′′(τ)− (α − r)µ′(τ) + γσ2ex(∂xvε,n + 2vε,n)µ
′(τ)

+ β′
ε(·)µ′(τ) + β′

ε(··)µ′(τ)− β′
ε(·)µ′(τ) + β′

ε(··)λ′(τ)

= (q̄ − (α− r))µ′(τ) + γσ2ex(∂xvε,n + 2vε,n)µ
′(τ) + β′

ε(··)µ′(τ) + β′
ε(··)λ′(τ).

If we assume that q̄ ≥ α−r or q̄ = 0, then we see from the inequality ∂τvε,n ≥ −vε,n
that

(2.17) T̃[w̃] ≥ 0 = T̃[0].
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By (2.16), we have

(2.18)
∂xw̃(x, τ) = 0, x = ±n,

w̃(x, 0) = (α− r)(1 − µ0)−
[
γσ2(1− µ0)

2ex + βε(0)
]
+ µ′(0) ≥ 0.

Combining (2.17) and (2.18), we get

w̃ ≥ 0 if and only if ∂τvε,n ≥ −µ′(τ).

From −C0 ≤ −βε(vε,n − 1 + µ(τ)) ≤ 0 and −C0 ≤ −βε(−vε,n + 1 + λ(τ)) ≤ 0,
we see that

(2.19) ‖vε,n‖W 2,1
p,loc(Ω

n
T ) ≤ c,

where c is independent of ε and n. Using a Cα-estimate, we have

(2.20) ‖vε,n‖Cα,α/2(Ω̄n
T ) ≤ c

for some constant c > 0 which is independent of ε. Then we deduce that

vε,n ⇀ vn in W
2,1
p,loc(Ω

n
T ) weakly,(2.21)

vε,n → vn in C(Ω̄n
T )(2.22)

as ε → 0+, where vn is the solution to the problem (2.9). Moreover, −vε,n ≤
∂xvε,n ≤ 0 and ∂τvε,n ≥ −µ′(τ) become the inequalities (2.10) as ε → 0+.

Finally, we prove the uniqueness of a solution. Suppose that v1, v2 are two
solutions to the problem (2.11) and that the set

N := {(x, τ) : v1(x, τ) < v2(x, τ), |x| < n, 0 < τ ≤ T }

is nonempty. Then if (x, τ) ∈ N, we have

{
v1(x, τ) < 1 + λ(τ) implies that ∂τv1 − Lxv1 ≥ 0,

v2(x.τ) > 1− µ(τ) implies that ∂τv2 − Lxv2 ≤ 0.

Define v∗ = v2 − v1. Then v∗ satisfies





∂τv
∗ − σ2

2 ∂xxv
∗ −

(
α− r + σ2

2

)
∂xv

∗ − (α− r)v∗

+γσ2ex [v2∂xv
∗ + (v1 + v2 + ∂xv1) v

∗] ≤ 0, in N,

v∗(x, 0) = 0, on ∂pN ∩ {|x| < n},
∂xv

∗(x, 0) = 0, on ∂pN ∩ {|x| = n},

where ∂pN is the parabolic boundary of the domain N. Using the ABP maximum
principle (see [7] and [11]), we get v∗ ≤ 0 in N, which contradicts the definition of
N. 2
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Theorem 2.2. There exists a unique solution v ∈ C(Ω̄T ) ∩W
2,1
p,loc(Ω

R
T ) to problem

(2.9) for all R > 0, 1 < p < +∞. Also,

(2.23) ∂xv ≤ 0 in ΩT ; ∂τv ≥ −µ′(τ) a.e. in ΩT .

Moreover, for any fixed K ∈ R, v ∈ Cα,α/2((−∞,K)× (0, T )) for some 0 < α < 1,
with

(2.24) |v|Cα,α/2((−∞,K)×(0,T )) ≤ CK ,

where CK is a positive constant depending on K.

Proof. Since the solution vn of the problem (2.9) belongs to W
2,1
p,loc(Ω

n
T ), we rewrite

problem (2.9) as





∂τvn − Lxvn = f(x, τ), in Ωn
T ,

∂vn(x, τ) = 0, x = ±n, 0 ≤ τ ≤ T,

vn(x, 0) = 1− µ0, −n ≤ x ≤ n,

where

f(x, τ) = χ{vn=1+λ(τ)}(x, τ) ·
[
λ′(τ)− (α− r)(1 + λ(τ)) + γσ2ex(1 + λ(τ))2

]

+ χ{vn=1−µ(τ)}(x, τ) ·
[
−µ′(τ) − (α− r)(1 − µ(τ)) + γσ2ex(1 − µ(τ))2

]
.

Then we see that
|f(x, τ)| ≤ c(R) for (x, τ) ∈ ΩR

T ,

where the constant c(R) depends on R, but is independent of n. Therefore, for any
fixed R > 0, we choose n > R. Then we have the following W 2,1

p uniform estimate

in Ω
R

T :

‖vn‖W 2,1
p (ΩR

T ) ≤ C
(
‖vn‖L∞(ΩR

T ) + (1− µ0) + ‖f(x, τ)‖L∞(ΩR
T )

)

≤ C(R)

for some constant C(R) which is independent of n. Letting n → +∞, we have a
subsequence:

vn ⇀ vR in W 2,1
p (ΩR

T ) weakly and vn → vR in C(Ω
R

T ) as n → +∞.

Define v = vR if x ∈ [−R,R]. Then it follows that v is well-defined and v is the
solution of problem (2.7).

Now, we prove (2.24). Note that

{
∂τv − Lxv = f(x, τ), in ΩT ,

v(x, 0) = 1− µ0, x ∈ R.
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Since f(x, τ) is bounded on (−∞,K)× (0, T ), (2.24) follows from the standard Cα

theory of parabolic equation. The proof of the uniqueness is the same as that of
Lemma 2.1. 2

3. Characterizations of the Free Boundaries

In this section, we mainly consider the problem (1.3). We define

BR = {(z, τ) : V (z, τ) = 1 + λ(τ)} (buy region),

NR = {(z, τ) : 1− µ(τ) < V (z, τ) < 1 + λ(τ)} (no transaction region),

SR = {(z, τ) : V (z, τ) = 1− µ(τ)} (sell region).

Note that

(∂τ − Lz)(1 + λ(τ))

= λ′(τ) − (α− r)(1 + λ(τ)) + γσ2z(1 + λ(τ))2 ≤ 0, in BR,

(∂τ − Lz)(1− µ(τ))

= −µ′(τ)− (α− r)(1 − µ(τ)) + γσ2z(1− µ(τ))2 ≥ 0, in SR.

Also, we deduce that

BR ⊂
{
(z, τ) : z ≤ (α− r)(1 + λ(τ)) − λ′(τ)

γσ2(1 + λ(τ))2

}
,(3.1)

SR ⊂
{
(z, τ) : z ≥ (α − r)(1 − µ(τ)) + µ′(τ)

γσ2(1− µ(τ))2

}
.(3.2)

We remark that

(α − r)(1 + λ(τ)) − λ′(τ)

γσ2(1 + λ(τ))2
≤ (α− r)(1 + λ(τ)) + µ′(0)

γσ2(1 + λ(τ))2

≤ (α− r)(1 − µ0) + µ′(0)

γσ2(1− µ0)2

≤ (α− r)(1 − µ(τ)) + µ′(τ)

γσ2(1− µ(τ))2
.

On the other hand, from the inequalities (2.23) and (2.24), we see that

∂τV ≥ −µ′(τ), ∂zV = e−x∂xV ≤ 0,(3.3)

|V (z, τ)|
C

α/2
τ [0,T ]

≤ CK , 0 < z ≤ K,(3.4)

where CK is a constant depending on K. From the second inequality in (3.3), we
can define the free boundaries:

zb(τ) = sup {z : V (z, τ) = 1 + λ(τ)} , 0 < τ ≤ T,

zs(τ) = inf {z : V (z, τ) = 1− µ(τ)} , 0 < τ ≤ T.
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From the first inequality in (3.3), we deduce that zs(τ) is increasing, but zb(τ) is
not always increasing.

Lemma 3.1. There is a constant Ms > 0 such that

0 ≤ zb(τ) ≤
(α− r)(1 + λ(τ)) − λ′(τ)

γσ2(1 + λ(τ))2
,(3.5)

(α− r)(1 − µ(τ)) + µ′(τ)

γσ2(1− µ(τ))2
≤ zs(τ) ≤ Ms,(3.6)

where Ms is independent of T .

Proof. Since V (z, τ) = 1 + λ(τ) for all z < 0, zb(τ) ≥ 0. From (3.1) and (3.2), we
see that the second parts of (3.5) and the first parts of (3.6) hold.

Next, we claim that zs(τ) ≤ Ms. First, we introduce the stationary problem of
(1.3):

(3.7)





−LzW (z) = 0, if 1− µ(T ) < W (z) < 1 + λ(T ), z ∈ R+,

−LzW (z) ≤ 0, if W (z) + 1 + λ(T ), z ∈ R+,

−LzW (z) ≥ 0, if W (z) = 1− µ(T ), z ∈ R+.

By the Fichera Theorem in [9], we consider the problem without the boundary
value at z = 0. Using the similar way in Section 2, we can show the existence and
uniqueness of the solution to problem (3.7): For each R > 0 and 1 < p < +∞,

W ∈ C1(R+) ∩W 2
p

(
1

R
,R

)
.

Furthermore, we have W ′(z) ≤ 0. Then we can define

SR∗ :=
{
z ∈ R

+ : W (z) = 1− µ(T )
}
.

Set W ∗(z, τ) := W (z). If 1 − µ(τ) < W ∗ < 1 + λ(τ) for each (z, τ) ∈ R
+ × (0, T ],

then 1 − µ(T ) < W (z) < 1 + λ(T ). From the stationary problem (3.7), we have
∂τW

∗ − LzW
∗ = −LzW (z) = 0. As a result, we deduce that





∂τW
∗ − LzW

∗ = 0, if 1− µ(τ) < W ∗ < 1 + λ(τ), (z, τ) ∈ R
+ × (0, T ],

∂τW
∗ − LzW

∗ ≥ 0, if W ∗ = 1− µ(τ), (z, τ) ∈ R
+ × (0, T ],

∂τW
∗ − LzW

∗ ≤ 0, if W ∗ = 1 + λ(τ), (z, τ) ∈ R
+ × (0, T ].

Applying the comparison principle, we get V (z, τ) ≤ W ∗(z, τ) = W (z).
Next, we claim that there exists a constant Ms > 0 such that

[Ms,+∞)× {τ = T } ⊂ SR∗ × {τ = T } ⊂ SR.

If it holds, then [Ms,+∞) × [0, T ] ⊂ SR by the first parts of the inequality (3.3).
It means that zs(τ) ≤ Ms, which completes the proof.
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To prove the claim, it suffices to show that [Ms,+∞) ⊂ SR∗. Suppose the
claim were not. Then we could find that if 1− µ(T ) < W (z) < 1 + λ(T ),

d

dz

[
σ2

2
z(zW )′ +

(
α− σ2

2
− r

)
(zW )− γσ2

2
(zW )2

]
= 0.

Then we have

(3.8) z(zW )′ +

(
2(α− r)

σ2
− 1

)
(zW )− γ(zW )2 = C̄,

where C̄ is an unknown constant. Define

Ŵ := zW +
1

2γ

[
1− 2(α− r)

σ2

]
.

Then zŴ ′ − γŴ 2 = C, where C = C̄ − 1
4γ2

[
1− 2(α−r)

σ2

]2
.

If C < 0, zŴ ′ − γŴ 2 = −C2
1 , where C2

1 = −C. By solving the ODE, we can
see that

Ŵ =
C1√
γ

(
2

1− C2z2
√
γC1

− 1

)
, W =

1

z

(
Ŵ +

α− r

γσ2
− 1

2γ

)
.

As z → +∞, W → 0, which contradicts 1− µ(τ) ≤ W ≤ 1 + λ(τ).

If C > 0, zŴ ′ − γŴ 2 = C2
1 , where C2

1 = C. By solving the ODE, we get

Ŵ =
C1√
γ
tan (C1

√
γ ln z + C2) , W =

1

z

(
Ŵ +

α− r

γσ2
− 1

2γ

)
.

Then we obtain lim inf
z→+∞

W = 0, which contradicts 1− µ(τ) ≤ W ≤ 1 + λ(τ).

If C = 0, by solving the ODE, then we obtain

Ŵ =
−1

C2 + γ ln z
, W =

1

z

(
Ŵ +

α− r

γσ2
− 1

2γ

)
.

As z → +∞, W → 0, which is a contradiction. Therefore, there exists a constant
Ms > 0 which the above claim holds. 2

Lemma 3.2. There exist z0 > 0 and τ0 > 0 such that (0, z0) × (0, τ0) ⊂ NR and
that

(3.9) all partial derivatives of V (z, τ) are bounded on (0, z0)× (0, τ0).

Proof. Using V (z, 0) = 1−µ0 and (3.4), for any fixed K > 0, we observe that there
exists τ0 > 0 such that

(3.10) V (z, τ) < 1 + λ(τ), (z, τ) ∈ (0,K)× (0, τ0).
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On the other hand, from (3.2), for 0 < z0 <
(α−r)(1−µ(τ))+µ′(τ)

γσ2(1−µ(τ))2 , we get

(3.11) V (z, τ) > 1− µ(τ), (z, τ) ∈ (0, z0).

Combining (3.10) and (3.11), we obtain

(3.12)





∂τV − LzV = 0, in (0, z0)× (0, τ0) ,
V (z0, τ) ∈ C∞ [0, τ0] ,
V (z, 0) = 1− µ0, 0 < z < z0.

Set x = ln z, x0 = ln z0, and v(x, τ) = V (z, τ). Then we have

(3.13)





∂τv − σ2

2 ∂xxv −
(
α− r + σ2

2

)
∂xv − (α− r)v + γσ2exv (∂xv + v) = 0,

v (x0, τ) ∈ C∞ [0, τ0] ,
v(x, 0) = 1− µ0, x ∈ (−∞, x0) .

Using (2.24) and Schauder theory in [9], we see that

‖v‖C2+α,1+α/2((−∞,x0)×(0,τ0)) ≤ Cx0
,

where Cx0
depends on x0. Employing a bootstrap argument, it gives that all partial

derivatives of v(x, τ) are bounded on (−∞, x0)× (0, τ0).
We proceed to show that ∂zV (z, τ) = e−x∂xv(x, τ) is bounded. Differentiating

with respect to x in (3.13), we get

∂τ (∂xv)−
σ2

2
∂xx (∂xv)−

(
α− r +

σ2

2

)
∂x (∂xv)− (α− r) (∂xv)

+ γσ2ex
[
(∂xv + v)

2
+ v (∂xxv + ∂xv)

]
= 0.

Set W = e−x∂xv. Then




∂τW − σ2

2
∂xxW −

(
α− r +

3

2
σ2

)
∂xW −

(
2α− 2r + σ2

)
W

= −γσ2
[
(∂xv + v)

2
+ v (∂xxv + ∂xv)

]
, (x, τ) ∈ (−∞, x0)× (0, τ0] ,

W (x0, τ) ∈ C∞ [0, τ0] ,
W (x, 0) = 0, x ∈ (−∞, x0) .

Since the right-hand side of the equation is bounded, ∂zV = e−x∂xv is bounded.
In the same manner, we can see that ∂zzV = ∂zW = e−2x(∂xxv − ∂xv) is bounded.
Furthermore, all partial derivatives of V (z, τ) are bounded on (0, z0) × (0, τ0) by
the bootstrap argument. 2

Theorem 3.3. zs(τ) ∈ C[0, T ]∩C∞(0, T ] and is strictly increasing with zs(0) = z∗,
where

(3.14) z∗ =
(α− r)(1 − µ0) + µ′(0)

γσ2(1− µ0)2
.
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Proof. First, we show (3.14). Recalling (3.2), we see that

z∗ ≥ (α− r)(1 − µ0) + µ′(0)

γσ2(1 − µ0)2
.

We suppose that z∗ >
(α−r)(1−µ0)+µ′(0)

γσ2(1−µ0)2
. Then there exists z2 < z∗ such that

(3.15)





∂τV − LzV = 0, (z, τ) ∈
(

(α−r)(1−µ0)+µ′(0)
γσ2(1−µ0)2

, z2

)
× (0, T ),

V (z, 0) = 1− µ0,
(α−r)(1−µ0)+µ′(0)

γσ2(1−µ0)2
≤ z ≤ z2.

Therefore, ∂τV (z, 0) = (α− r)(1−µ0)−γσ2z(1−µ0)
2 < −µ′(0), which contradicts

the first part of the inequalities (3.3). We complete the proof of (3.14).
Next, we claim that zs(τ) is strictly increasing in (0, T ]. Suppose that zs(τ)

is not strictly increasing in (0, T ]. Then zs(τ1) = zs(τ2) = z0 for some z0 ∈ R
+

and 0 < τ1 < τ2 ≤ T . And there exists z1 < z0 satisfying (z1, τ) ∈ NR for all
τ ∈ [τ1, τ2]. Set D = (z1, z0)× (τ1, τ2). Then we see that

{
V (z0, τ) = 1− µ(τ), τ ∈ [τ1, τ2],

∂τV (z0, τ) = −µ′(τ), τ ∈ [τ1, τ2].

Since V > 1− µ(τ) in D, we observe that

(3.16) ∂τV − LzV = 0, in D.

We show that the strong maximum principle implies that ∂τV ≡ −µ′(τ) or
∂zτV (z0, τ) < 0 for any τ ∈ (τ1, τ2). Differentiating (3.16) with respect to τ ,
we obtain

TW := ∂τW − σ2

2
z2∂zzW − (σ2 + α− r)∂zW − (α− r)W

+ γσ2z[2VW + (∂zV )W + zV ∂zW ] = 0 in D.

Assume that W = −µ′(τ2) is a minimum at (z′, τ ′) ∈ (z1, z0) × (τ1, τ2) and that
W > −µ′(τ2) is a maximum at (z∗, τ∗) ∈ (z1, z0) × (τ1, τ2). Since TW = 0 in D,
W ≡ −µ′(τ2) in D ∩ {τ ≤ τ ′} or ∂zW (z0, τ) < 0 for all τ ∈ [τ1, τ2] by the strong
maximal principle.

Since ∂zW (z0, τ) = ∂z(1− µ(τ)) = 0 for all τ ∈ [τ1, τ2], we see that

W ≡ −µ′(τ2) in D ∩ {τ ≤ τ ′}.

This means that ∂τV obtains its minimum value at interior point of NR∩{τ ≤ τ ′}.
Then we have ∂τV ≡ −µ′(τ2) in NR∩{τ ≤ τ ′} by the strong maximum principle. If
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q̄ = 0, we already know the fact that zs(τ) is strictly increasing. Hence, we assume
that q̄ 6= 0. Then, on the segment {z0} × (τ1, τ

′),

∂τV (z, τ) = −µ′(τ2) = −µ′(τ),

which is a contradiction. Therefore, zs(τ) is strictly increasing.
We claim that zs(τ) is continuous. Suppose that zs(τ) is not continuous in

(0, T ]. Then there exist τ0 ∈ (0, T ], z0 ∈ (0,+∞), and small ε0, δ0 such that

zs(τ0 − ε) ≤ z0 and zs(τ0 + ε) ≥ z0 + δ0

for all ε ∈ (0, ε0). Let D = (z0, z0 + δ)× (τ0, τ0 + ε) so that D ⊂ NR. Since zs(τ)
is strictly increasing, we observe that z∗ < z0, i.e., (α − r)(1 − µ(τ0)) + µ′(τ0) <

γσ2z0(1− µ(τ0))
2. In D, we see that

(3.17)
(∂τ − Lz)[V ]− (∂τ − Lz)[1 − µ(τ)]

= µ′(τ) + (α− r)(1 − µ(τ)) − γσ2z(1− µ(τ))2

= µ′(τ) + (α− r)(1 − µ(τ)) − γσ2z0(1− µ(τ))2 + γσ2(z0 − z)(1− µ(τ))2

≤ µ′(τ) + (α− r)(1 − µ(τ)) − γσ2z0(1− µ(τ0))
2 + γσ2(z0 − z)(1− µ(τ))2

= [µ′(τ) + (α− r)(1 − µ(τ))] − [µ′(τ0) + (α− r)(1 − µ(τ0))]

+ γσ2(z0 − z)(1− µ(τ))2

= µ′(τ)− µ′(τ0) + (α − r)(µ(τ0)− µ(τ)) + γσ2(z0 − z)(1− µ(τ))2

= (q̄ − (α− r))(µ(τ) − µ(τ0)) + γσ2(z0 − z)(1− µ(τ))2.

Here, we assume that q̄ ≤ α− r. Now (3.17) becomes

(3.18) (∂τ − Lz)[V ]− (∂τ − Lz)[1 − µ(τ)] ≤ γσ2(z0 − z)(1− µ(τ))2.

As τ → τ0, (3.18) leads to

∂τV (z, τ0) < −µ′(τ),

which is impossible. Therefore, zs(τ) is continuous in (0, T ]. Employing a method
developed by Friedman in [5], we can see that zs(τ) ∈ C∞(0, T ]. 2

Remark 3.4. So far, we have assumed that

1. 0 ≤ q ≤ α− r,

2. q̄ = 0 or q̄ = α− r.

We next investigate the limit of the solution and the values of the free boundary
zb(τ) near τ = 0.

Theorem 3.5. We have lim
z→0+

V (z, τ) = V0(τ) with
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1. If α− r < q, then zb(τ) = 0 for each τ ∈ [0, τ∗],

where τ∗ =
1

(α− r) − q
ln

1 + λ0

1− µ0
, and

(3.19) V0(τ) =

{
(1− µ0)e

(α−r)τ , 0 ≤ τ ≤ τ∗,

1 + λ(τ), τ > τ∗.

2. If α − r = q, then zb(τ) = 0 for each τ ∈ [0, τ0], where τ0 > 0 is the number
in Lemma 3.2, and

(3.20) V0(τ) = (1− µ0)e
(α−r)τ , 0 ≤ τ ≤ τ0.

Proof. Since all partial derivative of V (z, τ) are bounded on (0, z0)× (0, τ0), we see
that there exists V0(τ) ∈ C[0, T ] such that

lim
z→0+

V (z, τ) = V0(τ), lim
z→0+

∂τV (z, τ) = V ′
0(τ).

Applying (3.9) and letting z → 0+ in (3.12), we deduce that

{
V ′
0(τ) − (α− r)V0(τ) = 0, 0 < τ < τ0,

V0(0) = 1− µ0.

Then we obtain
V0(τ) = (1 − µ0)e

(α−r)τ , 0 < τ < τ0.

If α− r < q and let V0(τ
∗) = 1 + λ(τ∗), then we have

(1 − µ0)e
(α−r)τ = (1 + λ0)e

qτ∗

.

In short, it follows that

τ∗ =
1

(α− r)− q
ln

1 + λ0

1− µ0
,

which deduces (3.19). If α− r = q, then we see

V0(τ) = (1− µ0)e
(α−r)τ , 0 ≤ τ ≤ T,

which implies (3.20). 2

Next, we prove that zb(τ) ∈ C(0, T ]. In order to do so, we use a transformation
v̄(y, τ) := v(x, τ), where y = x + k(τ). Fix T1 ∈ (0, T ) and consider the problem
(2.7) only on domain R× [0, T1]. Let M ⊆ Ωn

T1
be a domain defined by

M := (−n, x1(τ)) × (0, T1),
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which x1(τ) is inf {x : v(x, τ) = 1}. Similarly,

M ε := (−n, xε
1(τ)) × (0, T1),

which xε
1(τ) is inf {x : vε,n(x, τ) = 1}. Set some parts of the boundary of M as

follows:

∂1M :=
{
(x, τ) ∈ Ωn

T1
: V (x, τ) = 1

}
, ∂2M := {−n} × (0, T1).

Similarly, set
∂1M

ε :=
{
(x, τ) ∈ Ωn

T1
: vε,n(x, τ) = 1

}
.

The task is now to find ∂τ v̄(y, τ) ≥ λ′(τ) in M . If it holds, this makes it possible
that z̄b(τ) is monotonic, where z̄b(τ) is corresponding to zb(τ).

Lemma 3.6. In M , ∂xvε,n − k′(τ)∂τ vε,n ≥ λ′(τ).

Proof. Step 1. Let y = x+ k(τ) and v̄(y, τ) = v(x, τ). Then we calculate




∂xv(x, τ) = ∂y v̄(y, τ),

∂xxv(x, τ) = ∂yy v̄(y, τ),

∂τ v̄(y, τ) = ∂τv(x, τ) − k′(τ)∂xv(x, τ).

We claim that ∂τv(x, τ) − k′(τ)∂xv(x, τ) ≥ λ′(τ). For simplicity, let

w1 = ∂τvε,n, w2 = ∂xvε,n,

w = k′(τ)∂xvε,n, Q = w1 − w = ∂τvε,n − k′(τ)∂xvε,n,

where k(τ) = k1λ(τ)+k2µ(τ) such that k1, k2 are to be chosen later. Differentiating
(2.11) with respect to τ , we obtain

(3.21)

∂τw1 −
σ2

2
∂xxw1 −

(
α− r +

σ2

2

)
∂xw1 − (α− r)w1

+ γσ2ex [vε,n∂xw1 + (∂xvε,n + 2vε,n)w1]

+ β′
ε(·)(w1 + µ′(τ)) − β′

ε(··)(−w1 + λ′(τ)) = 0, in Ωn
T1
.

Differentiating (2.11) with respect to x, we have

(3.22)

∂τw2 −
σ2

2
∂xxw2 −

(
α− r +

σ2

2

)
∂xw2 − (α− r)w2

+ γσ2ex
[
vε,n∂xw2 + 2vε,nw2 + vε,n∂xvε,n + w2∂xvε,n + v2ε,n

]

+ β′
ε(·)w2 + β′

ε(··)w2 = 0, in Ωn
T1
.

Multiplying (3.22) by k′(τ), we get

(3.23)

∂τw − σ2

2
∂xxw −

(
α− r +

σ2

2

)
∂xw − (α − r)w

+ γσ2ex
[
vε,n∂xw + 2vε,nw + k′(τ)vε,n∂xvε,n + (∂xvε,n)w + k′(τ)v2ε,n

]

+ β′
ε(·)w + β′

ε(··)w − k′′(τ)∂xvε,n = 0, in Ωn
T1
.
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Subtracting (3.23) from (3.21), we see that

(3.24)

T[Q] := ∂τQ− σ2

2
∂xxQ−

(
α− r +

σ2

2

)
∂xQ− (α− r)Q

+ γσ2ex [vε,n∂xQ+ (∂xvε,n)Q+ 2vε,nQ] + β′
ε(·)Q+ β′

ε(··)Q
= γσ2ex[k′(τ)vε,n∂xvε,n + k′(τ)v2ε,n]

− β′
ε(·)µ′(τ) + β′

ε(··)λ′(τ) − k′′(τ)∂xvε,n, in Ωn
T1
.

Substituting Q = λ′(τ) into (3.24), we have

(3.25)
T[λ′(τ)] = λ′′(τ)− (α− r)λ′(τ) + γσ2ex[λ′(τ)∂xvε,n + 2λ′(τ)vε,n]

+ β′
ε(·)λ′(τ) + β′

ε(··)λ′(τ).

Combining (3.24) with (3.25), we see that

T[Q]− T[λ′(τ)]

= γσ2ex[k′(τ)vε,n∂xvε,n + k′(τ)v2ε,n − λ′(τ)∂xvε,n − 2λ′(τ)vε,n]

− k′′(τ)∂xvε,n − λ′′(τ) + (α − r)λ′(τ) − β′
ε(vε,n − 1 + µ(τ))[µ′(τ) + λ′(τ)]

=: I1 + I2 + I3 + I4,

where

I1 = γσ2ex[k′(τ)vε,n∂xvε,n + k′(τ)v2ε,n − λ′(τ)∂xvε,n − 2λ′(τ)vε,n],

I2 = −k′′(τ)∂xvε,n ≥ 0,

I3 = λ′′(τ) + (α− r)λ′(τ) = (q + α− r)λ′(τ) ≥ 0,

I4 = −β′
ε(vε,n − 1 + µ(τ))[µ′(τ) + λ′(τ)].

We claim that
T[Q]− T[λ′(τ)] ≥ 0.

Since I2 and I3 are nonnegative and I4 ≥ 0 in M ε for sufficiently small ε > 0, we
have to show that I1 is nonnegative. Now, we see the boundary condition in M ε.
Define T̂ by

T̂[w] := ∂τw − σ2

2
∂xxw −

(
α− r +

σ2

2

)
− (α− r)w

+ γσ2ex
(
v∂xw + 3vw + w2 + v2

)
.

Differentiating (2.7) with respect to x, we obtain

T̂[∂xv] = 0, in M.

Let A = {(y, τ) : x− c ≤ y ≤ x+ c, (x, τ) ∈ ∂1M} be a subset such that A ⊆ NR

for sufficiently small constant c. From the strong maximum principle, there exists
δ1 > 0 such that

∂xv ≤ −δ1, in A.
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Then, for sufficiently small ε > 0,

(3.26) ∂xvε,n ≤ −δ1

2
, in ∂1M

ε.

Also, let B = {(y, τ) : x− c ≤ y ≤ x+ c, (x, τ) ∈ ∂2M ∩NR} be a subset such
that B ⊆ NR for sufficiently small constant c. From the strong maximum principle,
there exists δ2 > 0 such that

∂xv ≤ −δ2, in B.

Then, for sufficiently small ε > 0,

(3.27) ∂xvε,n ≤ −δ2

2
, in ∂2M ∩NR.

Choose

k(τ) :=
1

δ
[4λ(τ) + 2µ(τ)],

where δ := min{δ1, δ2, δ3} > 0. Here, δ3 > 0 is to be selected later. Therefore, we
have

∂τvε,n − k′(τ)∂xvε,n ≥ −µ′(τ)− k′(τ) ·
(
− δ

2

)

= −µ′(τ) + (2λ′(τ) + µ′(τ))

≥ λ′(τ).

Since ∂τvε,n − k′(τ)∂xvε,n = λ′(τ) on the boundary ∂2M ∩ BR, combining (3.26)
and (3.27) yields

∂τvε,n − k′(τ)∂xvε,n ≥ 0 in ∂1M ∪ ∂2M.

On the other hand, we get

T̃[∂xv + v] := T̂[∂xv + v]− 2γσ2exv[∂xv + v] ≥ 0 in M.

From the strong minimum principle, there exists δ3 > 0 such that

∂xv + v ≥ δ3 in M.

Then,

∂xvε,n + vε,n ≥ δ3

2
in M ε.
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Therefore, in the domain M ε,

I1 = γσ2ex[k′(τ)vε,n(∂xvε,n + vε,n)− λ′(τ)(∂xvε,n + 2vε,n)]

≥ γσ2ex
[
k′(τ)vε,n ·

(
δ3

2

)
− 2λ′(τ)vε,n

]

≥ 1

2
γσ2exvε,n [k

′(τ)δ − 4λ′(τ)]

≥ 1

2
γσ2exvε,n[2µ

′(τ)]

≥ 0.

Therefore, we complete the proof of claim. Note that





Q(x, τ) = w1 − k′(τ)w2 ≥ λ′(τ), if (x, τ) ∈ ∂1M ∪ ∂2M,

Q(x, 0) = (w1 − k′(τ)w2)(x, 0)

= (α− r)(1 − µ0)− [γσ2(1− µ0)
2ex + βε(0)]− kλ′(τ) · 0.

Then

Q(x, 0)− λ′(0) = (α− r)(1 − µ0) + [C0 − γσ2(1− µ0)
2ex − λ′(0)] ≥ 0.

Therefore, we conclude that Q(x, τ) ≥ λ′(τ) in Ωn
T1
. 2

We consider the domain S := {(y, τ) : −∞ ≤ y ≤ x1(τ) + k(τ)}. From Lemma
3.6, we see that ∂τ v̄(y, τ) ≥ λ′(τ) in S.

Theorem 3.7. There holds zb(τ) ∈ C(0, T ].

Proof. Suppose that theorem is false. From the problem (2.7) and Lemma 3.6, we
see that there exists (y1, y2)× (0, τ1) ⊂ S such that

{
∂τ v̄ − Ly v̄ = 0, (y, τ) ∈ (y1, y2)× (0, τ1),

v̄(y, τ1) = 1 + λ(τ1), y ∈ [y1, y2],

where

Ly v̄ :=
σ2

2
∂yy v̄ + (α− r +

σ2

2
− k′(τ))∂y v̄ + (α− r)v̄ − γσ2ey−k(τ)v̄(∂y v̄ + v̄).

Set w̄ := ∂y v̄. Then w̄ satisfies





∂τ w̄ − σ2

2 ∂yyw̄ − (α− r + σ2

2 − k′(τ))∂yw̄ − (α− r)w̄

+γσ2ey−k(τ)[3v̄w̄ + w̄∂y v̄ + v̄∂yw̄]

= −γσ2ey−k(τ)v̄2 ≤ 0, (y, τ) ∈ (y1, y2)× (0, τ1),

w̄(y, 0) = 0, y ∈ [y1, y2].
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It follows that w̄ achieves non-negative maximum on τ = τ1. By the maximum
principle, ∂y v̄ = w̄ ≡ 0 in (y1, y2)× (0, τ1). Then w̄ ≡ 0 in NRy ∩ {τ ≤ τ1}, where

NRy := {(y, τ) ∈ S : 1− µ(τ) < v̄(y, τ) < 1 + λ(τ)} .

Therefore, by monotonicity, there exist τ∗ < τ1 and y∗ < y1 such that y∗ = zb(τ
∗),

where
zb(τ) = sup {y : v̄(y, τ) = 1 + λ(τ)} .

Since w̄ ≡ 0 in NRy ∩ {τ ≤ τ1}, we have v̄(y, τ) = 1 + λ(τ∗) on the line {τ = τ∗},
which is a contradiction. Hence, we see that zb(τ) is continuous, which deduces
that zb(τ) ∈ C(0, T ]. 2

Theorem 3.8. There holds zb(τ) ∈ C∞(0, T ].

Proof. Since k(τ) is smooth, the proof of Theorem 3.8 follows directly from the fact
that z̄b(τ) ∈ C∞(0, T ], which is clear from [13]. 2

4. Equivalence

The equivalence of the double obstacle problem and the original problem is
discussed in this section. According to (2.6), there should be two functions A(τ)
and B(τ) such that

V ∗(z, τ) =

{
A(τ) − γ(1 + λ(τ)), if (z, τ) ∈ BR,

B(τ) − γ(1− µ(τ)), if (z, τ) ∈ SR.

Since ∂τV
∗ − LV ∗ = 0 on z = zb(τ), recalling (2.4) we obtain

(4.1) A′(τ) = γλ′(τ)zb(τ)− γ(α− r)(1 + λ(τ))zb(τ) +
σ2

2
γ2(1 + λ(τ))2z2b (τ).

Since V ∗(z, 0) = −γ(1 + λ0)z, A(0) = 0. Therefore, by the Fundamental Theorem
of Calculus, we have

(4.2) A(τ) =

∫ τ

0

γλ′(t)zb(t)− γ(α− r)(1 + λ(t))zb(t) + γ2σ
2

2
(1 + λ(t))2zb(t)

2 dt.

From the integral of (2.6) with respect to z, we get

(4.3) V ∗(z, τ) = A(τ) − γ

∫ z

0

V (ξ, τ) dξ.

Lemma 4.1. V ∗(z, τ), ∂τV
∗(z, τ), z∂zV

∗, z2∂zzV
∗ ∈ C(R× [0, T ]). Moreover,

(4.4) V ∗(z, τ) =

{
A(τ) − γ(1 + λ(τ))z, if z ≤ zb(τ),

B(τ) − γ(1− µ(τ))z, if z ≥ zs(τ),
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where A(τ) is given by (4.2) and

(4.5) B(τ) = A(τ) − γ

∫ zs(τ)

0

V (ξ, τ)dξ + γ(1− µ(τ))zs(τ).

Proof. First we prove (4.4). If z ≤ zb(τ), we obtain from (4.3) that

V ∗(z, τ) = A(τ) − γ

∫ z

0

(1 + λ(τ)) dξ = A(τ) − γ(1 + λ(τ))z.

If z ≥ zs(τ), we have

V ∗(z, τ) = A(τ) − γ

∫ zs(τ)

0

V (ξ, τ) dξ − γ

∫ z

zs(τ)

(1− µ(τ)) dξ

= A(τ) − γ

∫ zs(τ)

0

V (ξ, τ) dξ + γ(1− µ(τ))zs(τ) − γ(1− µ(τ))z

= B(τ) − γ(1− µ(τ))z, (by (4.5)).

Now, we show the smoothness of V ∗(z, τ). Since zb(τ) ∈ C[0, T ], A(τ) ∈ C1[0, T ]
by (4.2). Furthermore, V ∈ L∞(R× [0, T ]) and is continuous with respect to τ . As
a result, V ∗(z, τ) ∈ C(R× [0, T ]) by (4.3).

Next, we prove ∂τV
∗(z, τ) ∈ C(R× [0, T ]). Indeed,

(4.6) ∂τV
∗(z, τ) = A′(τ) −

∫ z

0

∂τV (ξ, τ) dξ.

It is clear that ∂τV
∗ is continuous across z = 0 by (4.6). On the other hand, (4.6)

can be rewritten as

(4.7) ∂τV
∗(z, τ) = A′(τ) − γ

∫ z

zb(τ)

∂τV (ξ, τ)dξ − γλ′(τ)zb(τ).

If z ≤ zb(τ), then

(4.8)

∂τV
∗(z, τ) = A′(τ) − γλ′(τ)zb(τ)

= −γ(α− r)(1 + λ(τ))zb(τ) + γ2σ
2

2
(1 + λ(τ))2z2b (τ).

If zb(τ) ≤ z ≤ zs(τ), then

(4.9)

∫ z

zb(τ)

∂τV (ξ, τ)dξ

=

∫ z

zb(τ)

LzV (ξ, τ)dξ

=

∫ z

zb(τ)

∂

∂ξ

[
σ2

2
ξ2∂ξV (ξ, τ) + (α− r)ξV (ξ, τ) − γ

σ2

2
(ξV (ξ, τ))2

]
dξ

=

[
σ2

2
ξ2∂ξV (ξ, τ) + (α− r)ξV (ξ, τ) − γ

σ2

2
(ξV (ξ, τ))2

]ξ=z

ξ=zb(τ)

.
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Combining (4.7) and (4.9), we get

(4.10)

∂τV
∗(z, τ)

= A′(τ) − γλ′(τ)zb(τ)

− γ

[
σ2

2
ξ2∂ξV (ξ, τ) + (α− r)ξV (ξ, τ) − γ

σ2

2
(ξV (ξ, τ))2

]ξ=z

ξ=zb(τ)

= −γ

[
σ2

2
z2∂zV (z, τ) + (α− r)zV (z, τ)− γ

σ2

2
(zV (z, τ))2

]
.

Combining (4.8) and (4.10) implies that ∂τV
∗(z, τ) is continuous across z =

zb(τ). Moreover, by (4.10),

(4.11) lim
z→z−

s (τ)
∂τV

∗(z, τ) = −γ(α− r)(1 − µ(τ))zs(τ) + γ2σ
2

2
(1− µ(τ))2z2s(τ).

On the other hand, if z ≥ zs(τ),

∂τV
∗(z, τ)

= B′(τ) + γµ′(τ)z

= A′(τ) − γ

∫ zs(τ)

0

∂τV (ξ, τ)dξ + γ(z − zs(τ))µ
′(τ)

= A′(τ) − γ

[
σ2

2
ξ2∂ξV (ξ, τ) + (α− r)ξV (ξ, τ) − γ

σ2

2
(ξV (ξ, τ))2

]ξ=zs(τ)

ξ=zb(τ)

+ γ(z − zs(τ))µ
′(τ)

= γ(z − zs(τ))µ
′(τ) + γ2σ

2

2
z2s (τ)(1 − µ(τ))2 − γ(α− r)zs(τ)(1 − µ(τ)).

If z = zs(τ), then

∂τV
∗(z, τ) = −γ(α− r)(1 − µ(τ))zs(τ) + γ2σ

2

2
(1− µ(τ))2z2s (τ).

Therefore, ∂τV
∗(z, τ) is continuous across z = zs(τ). As a result, we notice that

∂z[zV (z, τ)] is bounded on R× [0, T ], and that z∂zV
∗(z, τ) = −γzV (z, τ) is contin-

uous on R× [0, T ]. Furthermore,

z2∂zzV
∗(z, τ) = −γz2∂zV (z, τ) = −γz {∂z[zV (z, τ)]− V (z, τ)}

is continuous on R× [0, T ]. This completes the proof of Lemma 4.1. 2

Theorem 4.2. V ∗(z, τ), defined by (4.4), is the solution of the problem (2.5). In
detail,

∂τV
∗ − LV ∗ ≤ 0, in R× (0, T );(4.12)

− γ(1 + λ(τ)) ≤ ∂zV
∗ ≤ −γ(1− µ(τ)), in R× (0, T );(4.13)

∂τV
∗ − LV ∗ = 0, if − γ(1 + λ(τ)) < ∂zV

∗ < −γ(1− µ(τ));(4.14)
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(4.15) V ∗(z, 0) =

{
−γ(1 + λ0)z, if z < 0,

−γ(1− µ0)z, if z ≥ 0.

Proof. Since ∂zV
∗ = −γV and 1−µ(τ) ≤ V ≤ 1+λ(τ), we obtain (4.13). In detail,





∂zV
∗ = −γ(1 + λ(τ)), if z ≤ zb(τ),

−γ(1 + λ(τ)) < ∂zV
∗ < −γ(1− µ(τ)), if zb(τ) < z < zs(τ),

∂zV
∗ = −γ(1− µ(τ)), if z ≥ zs(τ).

Combining A(0) = 0 and the initial value of V with (4.3) yields (4.15). Next, we
show (4.14). Since Lz(−γV ) = − 1

γ
∂
∂z (LV

∗), we have

(4.16) ∂z(∂τV
∗ − LV ∗) = 0 if − γ(1 + λ(τ)) < ∂zV

∗ < −γ(1− µ(τ)).

Moreover, we get

(4.17) ∂τV
∗ − LV ∗ = 0 on z = zb(τ).

Combining (4.16) and (4.17) gives (4.14). Finally, we know that

∂

∂z
(∂τV

∗ − LV ∗) = −γ (∂τV − LzV )





> 0, if z 6 zb(τ);
= 0, if zb(τ) < z < zs(τ);
6 0, if z > zs(τ),

which proves (4.12). 2
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