• Title/Summary/Keyword: Fredholm equation

Search Result 79, Processing Time 0.026 seconds

Elastodyamic analysis of torsion of shaft of revolution by line-loaded integral equation method

  • Yun, Tian Quan
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.457-466
    • /
    • 1998
  • The dynamic response of an elastic torsion shaft of revolution is analysed by the Line-Loaded Integral Equation Method (LLIEM). A "Dynamic Point Ring Couple" (DPRC) is used as a fictitious fundamental load and is distributed in an elastic space along the axis of the shaft outside the shaft occupation. According to the boundary condition, our problem is reduced to a 1-D Fredholm integral equation of the first kind, which is simpler for solving than that of a 2-D singular integral equation of the same kind obtanied by Boundary Element Method (BEM), for steady periodically varied loading. Numerical example of a shaft with quadratic generator under sinusoidal type of torque is given. Formulas for stresses and dangerous frequency are mentioned.

EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Bougoffa, Lazhar;Khanfer, Ammar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.899-911
    • /
    • 2018
  • In this paper, we consider the second-order nonlinear differential equation with the nonlocal boundary conditions. We first reformulate this boundary value problem as a fixed point problem for a Fredholm integral equation operator, and then present a result on the existence and uniqueness of the solution by using the contraction mapping theorem. Furthermore, we establish a sufficient condition on the functions ${\mu}$ and $h_i$, i = 1, 2 that guarantee a unique solution for this nonlocal problem in a Hilbert space. Also, accurate analytic solutions in series forms for this boundary value problems are obtained by the Adomian decomposition method (ADM).

Stress Intensity Factor for Multi-Layered Material Under Polynomial Anti-Symmetric Loading (멱급수 반대칭하중을 받는 다층재 중앙균열의 응력세기계수)

  • 이강용;김성호;박문복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3219-3226
    • /
    • 1994
  • A model is constructed to evaluate the stress intensity factors for a center crack subjected to polynomial anti-symmetric loading in a layered material. A Fredholm integral equation is derived by Fourier integral transform method. The integral equation is numerically analyzed to evaluate the effects of the ratios of shear modulus, Poisson's ratio and crack length to layer thickness as well as the number of layers on the stress intensity factor. The stress intensity factors are approached to constant values as the number of layers increase and decrease as the polynomial power of the loading increase. In case of the E-glass/Epoxy composite, dimensionless stress intensity factor is affected by cracked-resin layer thickness.

Stress Intensity Factor for Layered Material Under Anti-Symmetric Loading (반대칭하중을 받는 적층재 중앙균열의 응력세기계수)

  • 이강용;박문복;김성호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1382-1387
    • /
    • 1994
  • A model is constructed to evaluate the stress intensity factors for a center crack subjected to anti-symmetric loading in a layered material. A Fredholm integral equation is derived using the Fourier integral transform method. The integral equation is numerically analyzed to evaluate the effects of stress intensity factor on the shear modulus, Poisson's ratio and crack length to layer thickness. In case of the isotropic homogeneous material, the values of stress intensity factor derived in the present study agree with the previous solutions.

ON THE DISSIPATIVE HELMHOLTZ EQUATION IN A CRACKED DOMAIN WITH THE DIRICHLET-NEUMANN BOUNDARY CONDITION

  • Krutitskii, P.A.;Kolybasova, V.V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.63-77
    • /
    • 2005
  • The Dirichlet-Neumann problem for the dissipative Helmholtz equation in a connected plane region bounded by closed curves and containing cuts is studied. The Neumann condition is given on the closed curves, while the Dirichlet condition is specified on the cuts. The existence of a classical solution is proved by potential theory. The integral representation of the unique classical solution is obtained. The problem is reduced to the Fredholm equation of the second kind and index zero, which is uniquely solvable. Our results hold for both interior and exterior domains.

  • PDF

Mode I Field Intensity Factors of Infinitely Long Strip in Piezoelectric Media

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.845-850
    • /
    • 2000
  • We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip containing a Griffith crack under in-plane normal loading within the framework of linear piezoelectricity. The potential theory method and Fourier transforms are used to reduce the problem to the solution of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the field intensity factors are obtained, and the influences of the electric fields for PZT-6B piezoelectric ceramic are discussed.

  • PDF

C* -ALGEBRA VALUED SYMMETRIC SPACES AND FIXED POINT RESULTS WITH AN APPLICATION

  • Asim, Mohammad;Imdad, Mohammad
    • Korean Journal of Mathematics
    • /
    • v.28 no.1
    • /
    • pp.17-30
    • /
    • 2020
  • In this paper, we firstly introduce the class of C*-algebra valued symmetric spaces and utilize the same to prove our fixed point results. We furnish an example to highlight the utility of our main result. Finally, we apply our result to examine the existence and uniqueness of a solution for a system of Fredholm integral equations.

COMMON COUPLED FIXED FOINT THEOREMS FOR NONLINEAR CONTRACTIVE CONDITION ON INTUITIONISTIC FUZZY METRIC SPACES WITH APPLICATION TO INTEGRAL EQUATIONS

  • Deshpande, Bhavana;Sharma, Sushil;Handa, Amrish
    • The Pure and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.159-180
    • /
    • 2013
  • We establish a common fixed point theorem for mappings under ${\phi}$-contractive conditions on intuitionistic fuzzy metric spaces. As an application of our result we study the existence and uniqueness of the solution to a nonlinear Fredholm integral equation. We also give an example to validate our result.

Design of Magnetic Systems for SNUT-79 Tokamak (SNUT-79 토카막의 자장 계통 설계)

  • Cheol Hee Nam;Sang Hee Hong;Kie Hyung Chung;Sang Ryul In
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 1984
  • A toroidal-field (TF) coil with a pure tension D-shape curve is designed for the confinement of high-temperature plasmas in the SNUT-79, which is a tokamak being built at Seoul National University. A toroidal assembly of 16 D-shape TF coils is designed to produce the magnetic field of up to 3T, of which ripples appear to be below 4% of the average toroidal field in the plasma region. Exact positions and currents in six equilibrium coils distributed symmetrically in the z=0 plane are found by the solution of a set of linear equations which is transformed from a Fredholm integral equation of the first kind. The decay indices resulted from equilibrium field indicate that the stability condition for vertical and horizontal displacements is satisfied.

  • PDF

Stress Intensity Factors for an Interlaminar Crack in Composites under Arbitrary Crack Surface Loadings (임의의 균열표면 하중을 받는 복합채 중앙균열의 응력세기계수)

  • Lee, Gang-Yong;Park, Mun-Bok;Kim, Seong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.901-909
    • /
    • 1996
  • A model is constructed to evaluate the stress intensity factors(SIFs) for composites with an interlaminar crack subjected to as arbitrary crack surface loading. A mixed boundary value problem is formulated by Fourier integral transform method and a Fredholm integral equation of the second kind is derived. The integral equation is solved numerically and the mode I and II SIFs are evaluated for various shear modulus ratios between each layer, crack length to layer thickness, each term of crack surface polynomial loading and the number of layers. The mode I and II SIFs for the E- glass/epoxy composites as well as the hybrid composites are also evaluated.