• Title/Summary/Keyword: Fredholm

Search Result 155, Processing Time 0.018 seconds

Numerical Solution For Fredholm Integral Equation With Hilbert Kernel

  • Abdou, Mohamed Abdella Ahmed;Hendi, Fathea Ahmed
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.111-123
    • /
    • 2005
  • Here, the Fredholm integral equation with Hilbert kernel is solved numerically, using two different methods. Also the error, in each case, is estimated.

  • PDF

LEGENDRE EXPANSION METHODS FOR THE NUMERICAL SOLUTION OF NONLINEAR 2D FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND

  • Nemati, S.;Ordokhani, Y.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.609-621
    • /
    • 2013
  • At present, research on providing new methods to solve nonlinear integral equations for minimizing the error in the numerical calculations is in progress. In this paper, necessary conditions for existence and uniqueness of solution for nonlinear 2D Fredholm integral equations are given. Then, two different numerical solutions are presented for this kind of equations using 2D shifted Legendre polynomials. Moreover, some results concerning the error analysis of the best approximation are obtained. Finally, illustrative examples are included to demonstrate the validity and applicability of the new techniques.

SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

  • Yang, Yin;Chen, Yanping;Huang, Yunqing
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.203-224
    • /
    • 2014
  • We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Fredholm-Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in $L^{\infty}$ norm and weighted $L^2$-norm. The numerical examples are given to illustrate the theoretical results.

The Crack Problem for Functionally Graded Piezoelectric Ceramic Strip (기능 경사 압전 세라믹 스트립의 균열에 관한 연구)

  • 신정우;김성찬
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.37-42
    • /
    • 2002
  • We consider the problem of determining the singular stresses and electric fields in a functionally graded piezoelectric ceramic strip containing a Griffith eccentric crack under anti-plane shear loading with the theory of linear piezoelectricity. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate are obtained.

Sliding Mode Control with Bound Estimation for Robot Manipulators (경계 추정치를 가진 로봇 슬라이딩 모드 제어)

  • Yoo, Dong-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.42-47
    • /
    • 2006
  • In this paper, we propose a sliding mode control with the bound estimation for robot manipulators without requiring exact knowledge of the robot dynamics. For the bound estimation, the upper bound of the uncertain nonlinearities of robot dynamics is represented as a Fredholm integral equation of the first kind and we propose an adaptive scheme which is only dependent on the sliding surface function. Also, we prove the asymptotic stability for the robot systems using two important properties in the robot dynamics: skew-symmetry and positive-definiteness of robot parameters.

An Alternative Point-Matching Technique for Fredholm Integral Equations of Second Kind (제2종 Rredholm 적분방정식의 새로운 수식해법)

  • 이직열;김정기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.83-86
    • /
    • 1985
  • An alternative technique (or the numerical solution of Fredholm integral equations of second kind is presented. The approximate solution is obtained by fitting the data in mixed form at knots in the region of the problem. To decrease the error in the numerical solution, cubic B-spline functions which are twice continuously differentiable at knots are employed as basis function. For a given example, the results of this technique are compared with those of Moment method employing pulse functions for basis function and delta functions for test function and found to br in good agreement.

  • PDF

NUMERICAL SOLUTIONS OF NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS BY USING MADM AND VIM

  • Abed, Ayoob M.;Younis, Muhammed F.;Hamoud, Ahmed A.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.189-201
    • /
    • 2022
  • The aim of the current work is to investigate the numerical study of a nonlinear Volterra-Fredholm integro-differential equation with initial conditions. Our approximation techniques modified adomian decomposition method (MADM) and variational iteration method (VIM) are based on the product integration methods in conjunction with iterative schemes. The convergence of the proposed methods have been proved. We conclude the paper with numerical examples to illustrate the effectiveness of our methods.

ON THE NUMERICAL SOLUTION OF INTEGRAL EQUATIONS OF THE SECOND KIND WITH WEAKLY SINGULAR KERNELS

  • Fahmy, M.H.;Abdou, M.A.;Darwish, M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.503-512
    • /
    • 1999
  • The purpose of this paper is to introduce the (Toeplitz) quadrature method for solving fredholm integral equations of the second kind with mildly singular kernels. We are presented some numerical examples for the computation of the error estimate using the MathCad package.

ZERO BASED INVARIANT SUBSPACES AND FRINGE OPERATORS OVER THE BIDISK

  • Izuchi, Kei Ji;Izuchi, Kou Hei;Izuchi, Yuko
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.847-868
    • /
    • 2016
  • Let M be an invariant subspace of $H^2$ over the bidisk. Associated with M, we have the fringe operator $F^M_z$ on $M{\ominus}{\omega}M$. It is studied the Fredholmness of $F^M_z$ for (generalized) zero based invariant subspaces M. Also ker $F^M_z$ and ker $(F^M_z)^*$ are described.

A NUMERICAL METHOD FOR SOLVING THE FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND

  • Sridharan, V.;Jayashree, P.R.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.293-300
    • /
    • 1998
  • The numerical method is used to solve the Fredholm integral equation of the second kind with weak singular kernels using the Toeplitz matrices. The solution has a computing time requir-ment of O(N2) where 2N+1 is the number of discretization points used. Also the error estimate is computed. Some numerical Exam-ples are computed using the Mathcad package.