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Abstract

In this paper, we propose a sliding mode control with the bound estimation for robot manipulators without
requiring exact knowledge of the robot dynamics. For the bound estimation, the upper bound of the uncertain
nonlinearities of robot dynamics is represented as a Fredholm integral equation of the first kind and we propose
an adaptive scheme which is only dependent on the sliding swface function. Also, we prove the asymptotic
stability for the robot systems using two important properties in the robot dynamics: skew-symmetry and
positive-definiteness of robot parameters.
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1. Introduction joints, it is difficult to control robot manipulators

precisely by conventional control methods at high

QOver the years, much attention has been paid to
the problem of the controller design for robotic
manipulators. However, due to the mechanical
characteristics of robotic manipulators such as
high nonlinearity and coupling effects between

* FA 2 YR AV FE/ AR IeFRATA Fag
Tel : 031-670-5322, Fax : 031-670~-5329
E-mail : dsyoo@hknu.ac.kr
H5AdA 20063 68 8Y
124 AL 2 2006% 69 14Y
AlALg g 20063 69 28

@

speed. To overcome this difficulty, various control
algorithms using dynamics of robot manipulators
have been proposed. But, since the exact model of
robot manipulators cannot be easily obtained and
the heavy computational burden is required, it is
expensive to implement. To avoid these problems,
control algorithms using the theory of variable
structure system have been developed(1]. Among
developed control algorithms using the theory of
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VSS, there still exist some nontrivial difficulties in
the design such as the inversion of the inertia
matrix. Yeung and Chen[2] proposed a variable
structure controller for the set-point regulation
problem without having to take the inverse of the
inertia matrix. Su and Leung(3] presented a sliding
mode controller with the bound estimation for
accormplishing trajectory control of robots based
on the linear parameterization approach(4], which
decomposes the robot dynamics into the product of
a constant known vector and a known nonlinear
function called the regressor. In an interesting
paper(5), assuming that a nonlinear disturbance
function is represented as an integral equation,
Messner et al proposed an adaptive leaming rule
for a class of nonlinear systems. Integral equations
[6] provide more generally mathematical basis to
describe the upper bound of the uncertainties even
though we don’t have any information of dynamic
characteristics.

In this paper, for the trajectory control we
propose a sliding mode control with the bound
estimation of the uncertain nonlinear parameters
without exact knowledge of the robot dynamics.
For the bound estimation, we assume that the
upper bound of the uncertain nonlinearities is
represented as a Fredholm integral equation of the
first kind, i.e, an integral of the product of a
predefine kernel with an unknown influence
function. We also provide a sufficient condition for
the existence of such a representation. The
construction of an adaptation law is only
dependent on the sliding surface function. Using
the estimated bound, the sliding mode control is
constructed in such a way that the prescribed
sliding surface will attract every system’s
trajectory and upon the intersection with the
sliding surface the trajectory will remain there for
all subsequent time. To accomplish the given task,
we take advantage of two important properties,
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skew-symmetry and positive-definiteness of robot
parameters(4]. Using the above properties, we
easily prove the asymptotic stability of the robot
manipulator in the sense of Lyapunov stability.

2. Robot Dynamics

It is well known that the dynamic equation for
a robot manipulator with n degrees of freedom
based on Lagrangian formulation can be described
as follows:

M(g(@#)g(6)+ C(q(0),4(1)q() + G(g(0)) = u(r) )

where ¢(t)eR” is the joint angle vector,
M(g(t) e R™ is the inertia matrix, C(g(1).4(t)) e R"
is the centrifugal and coriolis matrix, G(g(t))eR"
is the gravitational torque, and u(t)e R" is the
applied joint torque. In the above dynamics, we
can find two important properties for our main
work.

Property 1: The inertia matrix M(q) is
symmetric and positive-definite for all q.

Using this property, it is not necessary to take
the inverse of the inertia matrix in the
conventional controller design.

Property 2: The matrix M(q)-2C(g,4) is skew
symmetric. That is, X7 (M(g)-2C(g.4)X =0 for
arbitrary vector X € R"[4].

These two properties are utilized to prove the

stability of the robot manipulator under
consideration.

3. Controller Design

We now propose a sliding mode control for the
position tracking problem of robot manipulators.

Let 9.0W€R" and be the desired joint angle
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vectors. We define the position tracking error by

e(t) = q(t) - q,(1) )

The sliding surface s=0 is chosen as hyperplane
s(2) = é(t) + Ae(r) 3)

where AeR™ is a positive definite matrix whose
eigenvalues are strictly in the right-hand complex
plane. To simplify the analysis, we define the
reference velocity error vector, €()€R" by the
linear combination

€, (1)=q,(t) - Ae(r) 4

and we can obtain the fact that s(*)=g(t)~-é¢, ().
We now discuss the desired compensation
control law which consists of a linear feedback
controller, a nonlinear feedforward compensator,
and a nonlinear feedback controller as follows:

u(t) = M(q,)%,(1) + €40, 40)é,(£) + Glgy)
—Kgs(r)+uy (1) )

where ~ means the estimation of robot parameters
and Ks€R™ is a positive definite matrix and
uy(t) represents the nonlinear control which will
be described later.

Employing the control law () on the robot
dynamics described by (1), the following sliding
mode equation is obtained:

M(q)s(t) = —(Clg,9) + K )s(@) +uy )+ H{g,q) ®)
where

H(q,9) = (M(g,) - M(q))e.()
+(C(g0,40) - C(,9)é, (1) + (G(q,) - G(9)) )

@

Thus, the uncertain nonlinear parameters on the
robot dynamics can be represented as H(q.49)-

In the design of a class of nonlinear feedback
controls, finding of the upper bound for H(g,9) is
very important for the asymptotic stability or
uniform  ultimate boundedness for  robot
manipulators. To describe the upper bound of the
nonlinearity/uncertainties, we will state the
following assumption using a Fredholm integral
equation of the first kind.

Assumption 1: There exists a known continuous
positive scalar-valued function p():R — R, such
that |H(@.9)]<p@) for all (.9)€R"xR".

Assumption 2 The function A2() can be
represented as a Fredholm integral equation of the
first kind, i.e., there exists a predefined kernel
Y(.):RxR—>R'and an unknown influence
function B():R—>R' such that, for an integral
interval [a bICR,

PO ={ ¥@.0) p)dz @®)

where

sup Ib‘P(t,r)T Y(,1)dr=Kx<®
] a

10

@

Remark 1! In general, the purpose of such an
integral equation is to determine the unknown
function B() for known functions p() and ‘¥(.)
[6]. In reverse, given a predefined kernel ¥(-), if
we estimate the unknown function A() using an
appropriate method, we may also estimate o().

Remark 2: Assumption 2 allows the designers to
choose any arbitrary kemel regardless of the
structure of the nonlinearities and uncertainties.
That is, even though the designers don’t have any
information of the nonlinearities and uncertainties
except that they are bounded, one can describe
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their upper bound using a designer-chosen kemel
and an unknown influence function.

Remark 3 The constraint on the predefined
kernel given by (9) is the sufficient condition
which guarantees that the estimate of p(f) which
will de defined later is bound.

Based on the above assumption, we propose the
following adaptation law for estimating the upper
bound of the nonlinearity/uncertainty p(t):

0 =
5 Aen=lloves (10)

where B(,):RxR—R' is the estimate of the
unknown influence function A() in (8 and
Qe R™ is a positive definite diagonal matrix. And
p(1), the function estimate of 2{f), is defined by

B = [ ¥y Bz an

Defining the influence error by A(,7) = B@,7)- B(r)
and using (8) and (10), we obtain

0 ~

Eﬂ(t’ 7)= ”S”Q\F(I,T) (12)
and

B0 = [ ¥ Bande =50~ o) 13)

Now, we consider the nonlinear control law:

s .
uy (f) = - H_sﬁp(t) if s(1)=0

0 if s()=0 (14

which represents the nonlinear feedback control
for suppression of the effect of the uncertainty and
drives the system trajectories toward the
switching surface until intersection occurs. Then,
we may state the following theorem
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Theorem 1: Consider the robot manipulator (1)
with the sliding surface (3) and control laws (5),
(10) and (14). If assumptions 1 and 2 are valid,
then s()=0 is asymptotically stable.

Proof: Consider the following Lyapunov function

VB =g M [Baa 0 Bends g

Differentiating (15) with respect to the time
yields and using the Property 1
V:sT(—Cs—Kss+u~+H)+%sTMs

+[B70" 2 Bas (16)

Using the Property 2 and Assumption 1 and 2,
(16) becomes

V=-s"Kes+sTuy+s"H+ ||s||I:\PTEdr

<-s"Kss =[5l +slo+ [
= —STKSJ <0 (].7)

This implies that s() is stable and bounded and

J2B™ B is bounded. We will now show that 5()
is bounded. Taking absolute value of (13) and
using the Schwarz inequality and (9) in
Assumption 2, we obtain

e lj:\v’ Edr|s [j:w’\wr]s[jfﬁ’ Edr]; <.
Since A(H) and s() are bounded, s(*) is also
bounded in (6). To complete the proof of
asymptotic  stability, if we define W(f)=s"K;s
then, W) <~V(t,s, ).
By Barbalat’s lemma, we can prove im#(®)=0
Consequently, since K is a positive-definite
matrix, s() is uniformly continuous and s() — 0
as t->oo, Therefore, s()=0 is asymptotically
stable.
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Remark 4. As shown in (10), the proposed
adaptation scheme uses only the sliding surface
function and the designer-defined kernel function.
It does not require any information on robot
dynamics.

4. lllustrative Example

We consider a two-link robot manipulator model
as shown in Fig. 1.

RY

Fig. 1. Two link robot manipulator model

[M,.(¢> Mu(¢)}[éHcﬂ¢ c,zé+c,z¢5}

My(@) My@)jé] |-Cno 0

+ |:Gl (‘9:¢)g:| - |:u1 }
G,(0.9)g U,
where

M \(8) = (m, + my)rk + myr; + 2mynrycos ¢
M, (§) = myr} +mynr, cosg, M,y (§) = myry
Cpp (@) =-m,rr,sing

G,(8,6) = (m, + m,)r, cos g+ m,r, cos(8 + ¢)
G,(0,¢0) = m,r, cos(0 + ¢).

r=1.0m,

Parameter values are r, =0.8m,

m, =0.5kg, and m,=05kg. let q=[6.4). The
desired trajectory chosen to describe the transition
from a given initial value ¢,(0) to a desired final
value 9.0) in the time interval 3 sec, with
§4(0)=¢,3)=0 is a simple function given by

(464

7,3)- 4,(0) EiosinEy)
2z 3 3

In order that the sliding surfaces are decoupled,
we choose the sliding surface as

5, =4(0-6,)+(0-6,), s, =4($-4,)+(@-¢)
where 4, =4,=7. In the simulation, the control

parameters are chosen as
K, = diag[10 5],
2
M=['”"‘ 0 ],c:o,c:o

2
0 m,r,

q,()=q,(0)+

1 ~ 2
£~0801004)

D=0 -0, f(O)=——=
¥ =1 (=0) f= oo

0 = diag{20 20].
And the integral interval is [a 6]={-0.5 0.5], We
take the initial and final positions to be
6,(0)=06(0)=-1.57, ¢,(0)=$(0) =0
0,3)=¢,3)=1.
Fig. 2 shows the control inputs and the tracking
errors. From this figure, the proposed controller

effectively controls the robot manipulators under
the nonlinearities and uncertainties.

Input y

Input Y

b

Position emor [rad]

-0.1

time{sec]

Fig. 2. Control inputs and tracking errors

5. Conclusion

In this paper, a sliding mode control scheme
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for the trajectory tracking problem of the
robot manipulator is presented using two
important properties in the robot dynamics, i.e,
skew-symmetry and positive-definiteness of robot
parameters. To describe the bound of uncertain
robot parameters, we assumed that it is formulated
as an integral of the product of a predefined kemel
with an unknown influence function. Based-on the
formula, a simple adaptation law is proposed for
estimating the bound. Thus, the main feature of
the proposed sliding mode is that the derivation of
the control law does not require exact knowledge
of the nonlinear robot system. The simulation
result shows that the proposed method effectively
controls the robot manipulator.
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