• 제목/요약/키워드: Fredholm

검색결과 155건 처리시간 0.022초

THE JUMP OF A SEMI-FREDHOLM OPERATOR

  • Lee, Dong-Hak;Lee, Woo-Young
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.593-598
    • /
    • 1994
  • In this note we give some results on the jump (due to Kato [5] and West [7]) of a semi-Fredholm operator. Throughout this note, suppose X is an Banach space and write L(X) for the set of all bounded linear operators on X. A operator $T \in L(x)$ is called upper semi-Fredholm if it has closed range with finite dimensional null space, and lower semi-Fredholm if it has closed range with its range of finite co-dimension. It T is either upper or lower semi-Fredholm we shall call it semi-Fredholm and Fredholm it is both. The index of a (semi-) Fredholm operator T is given by $$ index(T) = n(T) = d(T),$$ where $n(T) = dim T^{-1}(0)$ and d(T) = codim T(X).

  • PDF

FREDHOLM ALTERNATIVES FOR AF ALGEBRAS

  • Cho, Sung-Je
    • 대한수학회논문집
    • /
    • 제10권2호
    • /
    • pp.331-335
    • /
    • 1995
  • We prover Fredholm alternatives for AF algebras: If an element have the finite null projection and the confinite range projection then its image in the relative Calkin algebra is invertible.

  • PDF

Fredholm 적분식을 이용하여 불확실성의 경계치를 추정하는 적응강인제어기 설계 (Design of a Continuous Adaptive Robust Control Estimating the Upper Bound of the Uncertainties using Fredholm Integral Formulae)

  • 유동상
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권4호
    • /
    • pp.207-211
    • /
    • 2004
  • We consider a class of uncertain nonlinear systems containing the uncertainties without a priori information except that they are bounded. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound. Using this adaptive upper bound, a continuous robust control which renders uncertain nonlinear systems uniformly ultimately bounded is designed.

FREDHOLM-VOLTERRA INTEGRAL EQUATION WITH SINGULAR KERNEL

  • Darwish, M.A.
    • Journal of applied mathematics & informatics
    • /
    • 제6권1호
    • /
    • pp.163-174
    • /
    • 1999
  • The purpose of this paper is to obtain the solution of Fredholm-Volterra integral equation with singular kernel in the space $L_2(-1, 1)\times C(0,T), 0 \leq t \leq T< \infty$, under certain conditions,. The numerical method is used to solve the Fredholm integral equation of the second kind with weak singular kernel using the Toeplitz matrices. Also the error estimate is computed and some numerical examples are computed using the MathCad package.

THE RELIABLE MODIFIED OF LAPLACE ADOMIAN DECOMPOSITION METHOD TO SOLVE NONLINEAR INTERVAL VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

  • Hamoud, Ahmed A.;Ghadle, Kirtiwant P.
    • Korean Journal of Mathematics
    • /
    • 제25권3호
    • /
    • pp.323-334
    • /
    • 2017
  • In this paper, we propose a combined form for solving nonlinear interval Volterra-Fredholm integral equations of the second kind based on the modifying Laplace Adomian decomposition method. We find the exact solutions of nonlinear interval Volterra-Fredholm integral equations with less computation as compared with standard decomposition method. Finally, an illustrative example has been solved to show the efficiency of the proposed method.

Fredholm Type Integral Equations and Certain Polynomials

  • Chaurasia, V.B.L.;Shekhawat, Ashok Singh
    • Kyungpook Mathematical Journal
    • /
    • 제45권4호
    • /
    • pp.471-480
    • /
    • 2005
  • This paper deals with some useful methods of solving the one-dimensional integral equation of Fredholm type. Application of the reduction techniques with a view to inverting a class of integral equation with Lauricella function in the kernel, Riemann-Liouville fractional integral operators as well as Weyl operators have been made to reduce to this class to generalized Stieltjes transform and inversion of which yields solution of the integral equation. Use of Mellin transform technique has also been made to solve the Fredholm integral equation pertaining to certain polynomials and H-functions.

  • PDF