• Title/Summary/Keyword: Frame-ShearWall

Search Result 20, Processing Time 0.122 seconds

Effect of creep and shrinkage in a class of composite frame - shear wall systems

  • Sharma, R.K.;Maru, Savita;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.333-348
    • /
    • 2003
  • The behaviour of composite frame - shear wall systems with regard to creep and shrinkage with high beam stiffness has been largely unattended until recently since no procedure has been available. Recently an accurate procedure, termed the Consistent Procedure (CP), has been developed which is applicable for low as well as for high beam stiffness. In this paper, CP is adapted for a class of composite frame - shear wall systems comprising of steel columns and R.C. shear walls. Studies are reported for the composite systems with high as well as low beam stiffness. It is shown that considerable load redistribution occurs between the R.C. shear wall and the steel columns and additional moments occur in beams. The magnitude of the load redistribution and the additional moment in the beams depend on the stiffness of the beams. It is also shown that the effect of creep and shrinkage are greater for the composite frame - shear wall system than for the equivalent R.C. frame - shear wall system.

Apportionment of Section Area of Column and Shear Wall for Improvement of Lateral Stiffness in Frame-Shear Wall Structures (골조-전단벽 구조에서 수평강성의 향상을 위한 기둥과 전단벽 단면적의 배분)

  • Kim, Hyong-Kee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.32 no.7
    • /
    • pp.13-22
    • /
    • 2016
  • The research intended to search the optimal section area apportionment of columns and shear walls for improvement of lateral stiffness in frame-shear wall structure, using MIDAS-Gen. In this study, the main variables of analysis research were the section area ratios of column, the change of section area between the upper and lower columns and the change of thickness between the upper and lower shear walls. In order to find out the optimal section area apportionment of columns and shear walls for improvement of lateral stiffness in frame-shear wall structure, we examined the 30 stories reinforced concrete building. The results of this analysis study indicated that the section area ratios of column, the change of section area between the upper and lower columns, the change of thickness between the upper and lower shear walls had an impact upon the lateral stiffness in frame-shear wall structure. Moreover, it is showed that the research results can give help in obtaining the structural design data for finding out the optimal section area apportionment of columns and shear walls for improvement of lateral stiffness in frame-shear wall structure.

Dynamic Sensitivity Analysis For Lateral Drift Control Of Frame-Shear Wall Structures (골조-전단벽 구조물의 횡변위제어를 위한 동적 민감도 해석)

  • Lee, Han-Joo;Kim, Ji-Youn;Han, Seung-Baek;Nam, Kyung-Yun;Kim, Ho-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.571-576
    • /
    • 2007
  • This study presents stiffness-based optimal design to control quantitatively lateral drift of frame-shear wall structures subject to seismic loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also, the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. The 12 story frame-shear wall structural models is considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF

Structural Effect on Curtailment of Upper Shear Wall in Frame-Shear Wall Structure (골조-전단벽 구조에서 상부 전단벽 미배치의 구조효과)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.18-25
    • /
    • 2016
  • This research purposed to study a structural effect on curtailment of upper shear wall in frame-shear wall structures, using MIDAS-Gen. In this study, the analysis variables were the story number of curtailment of upper shear wall, change of column section in every 2 stories and change of shear wall thickness in every 2 stories. In order to analyse a structural effect on curtailment of upper shear wall in frame-shear wall structures, we studied the distribution of shear force and overturning moment according to curtailment of shear wall, the inflection point of shear wall from shear force/overturning moment and the lateral stiffness. The results of study proposed the quantitative influence that the curtailment of upper shear wall in frame-shear wall structures had on the structural performance such as lateral stiffness. Furthermore, it is verified that the results of study can be very helpful in catching the materials on the structure design for a reasonable frame-shear wall system.

Analysis for foundation moments in space frame-shear wall-nonlinear soil system

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1369-1389
    • /
    • 2016
  • The soil-structure interaction effect significantly influences the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic loads. In the present work, the nonlinear soil-structure analysis of a G+5 storey RC shear wall building frame having isolated column footings and founded on deformable soil is presented. The nonlinear seismic FE analysis is carried out using ANSYS software for the building with and without shear walls to investigate the effect of inclusion of shear wall on the moments in the footings due to differential settlement of soil mass. The frame is considered to behave in linear elastic manner, whereas, soil mass to behave in nonlinear manner. It is found that the interaction effect causes significant variation in the moments in the footings. The comparison of non-interaction and interaction analyses suggests that the presence of shear wall causes significant decrease in bending moments in most of the footings but the interaction effect causes restoration of the bending moments to a great extent. A comparison is made between linear and nonlinear analyses to draw some important conclusions.

Pseudo-dynamic test of the steel frame - Shear wall with prefabricated floor structure

  • Han, Chun;Li, Qingning;Jiang, Weishan;Yin, Junhong;Yan, Lei
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.431-445
    • /
    • 2016
  • Seismic behavior of new composite structural system with a fabricated floor was studied. A two-bay and three-story structural model with the scale ratio of 1/4 was consequently designed. Based on the proposed model, multiple factors including energy dissipation capacity, stiffness degradation and deformation performance were analyzed through equivalent single degree of freedom pseudo-dynamic test with different earthquake levels. The results show that, structural integrity as well as the effective transmission of the horizontal force can be ensured by additional X bracing at the bottom of the rigidity of the floor without concrete topping. It is proved that the cast-in-place floor in areas with high seismic intensity can be replaced by the prefabricated floor without pouring surface layer. The results provide a reliable theoretical basis for the seismic design of the similar structural systems in engineering application.

Investigations of elastic vibration periods of tall reinforced concrete office buildings

  • Al-Balhawi, Ali;Zhang, Binsheng
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.209-223
    • /
    • 2019
  • The assessment of wind-induced vibration for tall reinforced concrete (RC) buildings requires the accurate estimation of their dynamic properties, e.g., the fundamental vibration periods and damping ratios. In this study, RC frame-shear wall systems designed under gravity and wind loadings have been evaluated by utilising 3D FE modelling incorporating eigen-analysis to obtain the elastic periods of vibration. The conducted parameters consist of the number of storeys, the plan aspect ratio (AR) of buildings, the core dimensions, the space efficiency (SE), and the leasing depth (LD) between the internal central core and outer frames. This analysis provides a reliable basis for further investigating the effects of these parameters and establishing new formulas for predicting the fundamental vibration periods by using regression analyses on the obtained results. The proposed constrained numerically based formula for vibration periods of tall RC frame-shear wall office buildings in terms of the height of buildings reasonably agrees with some cited formulas for vibration period from design codes and standards. However, the same proposed formula has a high discrepancy with other cited formulas from the rest of design codes and standards. Also, the proposed formula agrees well with some cited experimentally based formulas.

Drift Design Method of High-rise Buildings Considering Design Variable Linking Strategy and Load Combinations (부재 그룹과 하중 조합을 고려한 고층건물 변위조절 설계법)

  • Seo, Ji-Hyun;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.357-367
    • /
    • 2006
  • Drift design methods using resizing algorithms have been presented as a practical drift design method since the resizing algorithms proposed easily find drift contribution of each member, called member displacement participation factor, to lateral drift to be designed without calculation of sensitivity coefficient or re-analysis. Weight of material to be redistributed for minimization of the lateral drift is determined according to the member displacement participation factors. However, resizing algorithms based on energy theorem must consider loading conditions because they have different displacement contribution according to different loading conditions. Furthermore, to improve practicality of resizing algorithms, structural member grouping is required in application of resizing algorithms to drift control of high-rise buildings. In this study, three resizing algorithms on considering load condition and structural member grouping are developed and applied to drift design of a 20-story steel-frame shear-wall structure and a 50-story frame shear-wall system with outriggers.

Analysis of settlements of space frame-shear wall-soil system under seismic forces

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1255-1276
    • /
    • 2015
  • The importance of considering soil-structure interaction effect in the analysis and design of RC frame buildings is increasingly recognized but still not penetrated to the grass root level owing to various complexities involved. It is well established fact that the soil-structure interaction effect considerably influence the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic lateral loads. In the present work, the linear soil-structure analysis of a G+5 storey RC shear wall building frame resting on isolated column footings and supported by deformable soil is presented. The finite element modelling and analysis is carried out using ANSYS software under normal loads as well as under seismic loads. Various load combinations are considered as per IS-1893 (Part-1):2002. The interaction analysis is carried out with and without shear wall to investigate the effect of inclusion of shear wall on the total and differential settlements in the footings due to deformations in the soil mass. The frame and soil mass both are considered to behave in linear elastic manner. It is observed that the soil-structure interaction effect causes significant total and differential settlements in the footings. Maximum total settlement in footings occurs under vertical loads and inner footings settle more than outer footings creating a saucer shaped settlement profile of the footings. Each combination of seismic loads causes maximum differential settlement in one or more footings. Presence of shear wall decreases pulling/pushing effect of seismic forces on footings resulting in more stability to the structures.

Damage assessment and performance-based seismic design of timber-steel hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Li, Minghao;Lam, Frank
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.101-117
    • /
    • 2014
  • This paper presents a reliability-based analysis on seismic performance of timber-steel hybrid shear wall systems. Such system is composed of steel moment resisting frame and infill wood frame shear wall. The performance criteria of the hybrid system with respect to different seismic hazard levels were determined through a damage assessment process, and the effectiveness of the infill wood shear walls on improving the seismic performance of the hybrid systems was evaluated. Performance curves were obtained by considering different target non-exceedance probabilities, and design charts were further established as a function of seismic weight. Wall drift responses and shear forces in wood-steel bolted connections were used as performance criteria in establishing the performance curves to illustrate the proposed design procedure. It was found that the presence of the infill wood shear walls significantly reduced the non-performance probabilities of the hybrid wall systems. This study provides performance-based seismic evaluations on the timber-steel hybrid shear walls in support of future applications of such hybrid systems in multi-story buildings.