• Title/Summary/Keyword: Frame rate up conversion

Search Result 55, Processing Time 0.028 seconds

An Adaptive Occluded Region Detection and Interpolation for Robust Frame Rate Up-Conversion

  • Kim, Jin-Soo;Kim, Jae-Gon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.201-206
    • /
    • 2011
  • FRUC (Frame Rate Up-Conversion) technique needs an effective frame interpolation algorithm using motion information between adjacent neighboring frames. In order to have good visual qualities in the interpolated frames, it is necessary to develop an effective detection and interpolation algorithms for occluded regions. For this aim, this paper proposes an effective occluded region detection algorithm through the adaptive forward and backward motion searches and also by introducing the minimum value of normalized cross-correlation coefficient (NCCC). That is, the proposed scheme looks for the location with the minimum sum of absolute differences (SAD) and this value is compared to that of the location with the maximum value of NCCC based on the statistics of those relations. And, these results are compared with the size of motion vector and then the proposed algorithm decides whether the given block is the occluded region or not. Furthermore, once the occluded regions are classified, then this paper proposes an adaptive interpolation algorithm for occluded regions, which still exist in the merged frame, by using the neighboring pixel information and the available data in the occluded block. Computer simulations show that the proposed algorithm can effectively classify the occluded region, compared to the conventional SAD-based method and the performance of the proposed interpolation algorithm has better PSNR than the conventional algorithms.

Frame Rate Up-Conversion Considering The Direction and Magnitude of Identical Motion Vectors (동일한 움직임 벡터들의 방향과 크기를 고려한 프레임율 증가기법)

  • Park, Jonggeun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.880-887
    • /
    • 2015
  • In this paper, frame rate up conversion (FRUC) algorithm considering the direction and magnitude of identical motion vectors is proposed. extended bilateral motion estimation (EBME) has higher complexity than bilateral motion estimation (BME). By using average magnitude of motion vector with x and y direction respectively, dynamic frame and static frame are decided. We reduce complexity to decide EBME. also, After we compare the direction and magnitude of identical motion vectors, We reduce complexity to decide motion vector smoothing(MVS). Experimental results show that this proposed algorithm has fast computation and better peak singnal to noise ratio(PSNR) results compared with EBME.

A New Motion Compensated Frame Interpolation Algorithm Using Adaptive Motion Estimation (적응적 움직임 추정 기법을 활용하는 새로운 움직임 보상 프레임 보간 알고리즘)

  • Hwang, Inseo;Jung, Ho Sun;Sunwoo, Myung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.62-69
    • /
    • 2015
  • In this paper, a new frame rate up conversion (FRUC) algorithm using adaptive motion estimation (AME-FRUC) is proposed. The proposed algorithm performs extended bilateral motion estimation (EBME) conducts motion estimation (ME) processes on the static region, and extract region of interest with the motion vector (MV). In the region of interest block, the proposed AME-FRUC uses the texture block partitioning scheme and the unilateral motion estimation for improving ME accuracy. Finally, motion compensated frame interpolation (MCFI) are adopted to interpolate the intermediate frame in which MCFI is employed adaptively based on ME scheme. Experimental results show that the proposed algorithm improves the PSNR up to 3dB, the SSIM up to 0.07 and 68% lower SAD calculations compared to the EBME and the conventional FRUC algorithms.

Frame rate up conversion using deblocking filter (디블로킹 필터를 이용한 프레임율 변환)

  • Kim, Nam-Uk;Lee, Yung-Lyul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.557-559
    • /
    • 2015
  • 움직임 보상 기반 프레임율 변환(Frame rate up-conversion based on motion compensation )에서 발생하는 블로킹 현상(Blocking artifact)을 줄여 영상의 화질을 높이기 위한 디블로킹 필터(De-blocking filter) 방법을 제안한다. 이 방법은 블록 단위로 동작하는 움직임 보상 과정에서 주변 블록과의 움직임이 급격히 달라지는 폐색영역에서 발생하는 블로킹 현상을 크게 줄일 수 있다. 제안하는 방법은 기존의 필터링을 하지 않는 방법보다 화질이 약 0.01db 향상하였다.

  • PDF

Frame Rate Up-Conversion Using the Motion Vector Correction based on Motion Vector Frequency of Neighboring blocks (주변 블록의 움직임 벡터 빈도수에 기반한 움직임 벡터 교정을 적용한 프레임 율 변환 기법)

  • Lee, Jeong-Hun;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.259-260
    • /
    • 2007
  • In this paper, a frame rate up-conversion algorithm using the motion vector frequency of neighboring blocks to reduce the block artifacts caused by failure of conventional motion estimation based on block matching algorithm is proposed. Experimental results show good performance of the proposed scheme with significant reduction of the erroneous motion vectors and block artifacts.

  • PDF

Frame Rate Up-Conversion with Occlusion Detection Function (폐색영역탐지 기능을 갖는 프레임율 변환)

  • Kim, Nam-Uk;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.265-272
    • /
    • 2015
  • A new technology on video frame rate up-conversion (FRUC) is presented by combining the median filter and motion estimation (ME) with an occlusion detection (OD) method. First, ME is performed to have a motion vector. Then, the OD method is used to refine motion vector in the occlusion region. Since the wrong motion vector can be obtained with high possibility in the occluded area, a median filtering that less depends on the motion vector is applied to that area, and since the motion vector is continuous and robust in the non-occluded area, BDMC(Bi-Directional Motion Compensated interpolation) is applied to obtain interpolated image in that area. BDMC using the bi-directional motion vectors achieves good results when continuity and robustness of the motion vector is higher. Experimental results show that the proposed algorithm provides better performance than the conventional approach. The average gain of PSNR (Peak Signal to Noise Ratio) is approximately 0.16 dB in the test sequences compared with BDMC.

An efficient frame rate up-conversion method with adaptive motion estimation and compensation for mobile projection displays

  • Lee, Jong-Ok;Jang, Seul-Ki;Chen, Qiao Song;Kim, Choon-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.810-813
    • /
    • 2007
  • Recently, mobile video communication is getting more and more popular. Visual quality and computational complexity are primary factors affecting performance of video communication. Frame rate up-conversion (FRC) is necessary for achieving high visual quality in mobile projection displays. In this paper, a FRC method using motion compensation based on block matching algorithm (BMA) with adaptive block size is proposed. In order to improve the accuracy of the estimated motion vectors, the motion vector refinement technique is proposed. Experiment results indicate that the proposed technique exhibits better performance with lower hardware complexity compared to the conventional methods.

  • PDF

Frame Interpolation using Bilateral Motion Refinement with Rotation (회전을 고려한 정밀 양방향 움직임 예측 프레임 보간 기법)

  • Lee, Min-Kyu;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.135-142
    • /
    • 2009
  • Since hold-type display systems have been developed, frame-rate up conversion (FRUC) is an essential technique to improve the temporal resolution in the display. FRUC improves the temporal resolution by interpolating one or multiple intermediate frames between two adjacent frames. In this paper, a new frame-rate up-conversion algorithm based on bilateral motion refinement with rotation is proposed. First, we perform bi-directional motion estimation between adjacent two frames to obtain a motion vector for each block. Then, we apply a modified median filtering to motion vectors for outlier-rejection and motion field smoothing. The filtered motion vectors are updated by the bilateral motion refinement with rotation. After the refined motion vector is obtained, the intermediate frame is generated by applying the overlapped block motion compensation (OBMC). Experimental results show that the proposed algorithm provides a better performance than the previous methods subjectively and objectively.

Performance Comparison of Block-based Distortion Estimations for FRUC Techniques (FRUC 기술을 위한 블록별 왜곡 크기 추정기법의 성능비교)

  • Kim, Jin-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.927-929
    • /
    • 2011
  • Since DVC (Distributed Video Coding) and FRUC (Frame Rate Up Conversion) techniques need to have an efficient motion compensated frame interpolation algorithms. Conventional works of these applications have mainly focused on the performance improvement of overall system. But, in some applications, it is necessary to evaluate how well the MCI (Motion Compensated Interpolation) frame matches the original frame. For this aim, this paper deals with the modeling methods for evaluating the block-based matching cost. First, several matching criteria, which have already been dealt with the motion compensated frame interpolation, are introduced and then combined to make estimate models for the size of MSE (Mean Square Error) noise of the MCI frame to original one. Through computer simulations, it is shown that the block-based cost evaluation models are tested and can be effectively used for estimating the MSE noise.

  • PDF

Motion-Compensated Frame Rate Up-Conversion Using Guidance Motion Vector (유도 움직임 벡터를 이용한 움직임 보상 프레임율 향상 기법)

  • Park, Bumjun;Yu, Songhyun;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.66-69
    • /
    • 2017
  • 본 논문에서는 프레임율 향상 기법 (Frame Rate Up-Conversion, FRUC)에 사용되는 새로운 움직임 예측(motion estimation)알고리즘을 제시한다. 제안된 알고리즘은 단 방향 움직임 예측(unilateral motion estimation)에 의해 순방향 및 역방향의 움직임 벡터(motion vector)를 독립적으로 추정한다. 움직임 벡터를 찾은 후, weighted motion vector smoothing(WMVS)가 적용된다. 다음으로, 보간 프레임 (interpolated frame)의 관점에서 현재 블록의 인접 블록들의 모션 벡터들을 후보들로 사용하여 현재 블록과 가장 잘 일치하는 움직임 벡터를 찾는다. 그 후, 선택된 움직임 벡터를 현재 블록의 유도 움직임 벡터 (guidance motion vector)로 정한다. 그런 다음 motion vector shifting error 를 없애기 위해 motion vector refinement (MVR)가 진행된다. 마지막 단계에서는 각 움직임 벡터의 신뢰도를 계산하여 순방향 및 역방향 움직임 벡터 중 최종 움직임 벡터를 선택한다.

  • PDF