• Title/Summary/Keyword: Frame Work

Search Result 805, Processing Time 0.027 seconds

Capacity Evaluation of VoIP Service over HSDPA with Frame-Bundling (HSDPA 시스템에서 Frame-Bundling을 채용한 VoIP 서비스 용량 평가)

  • Hwang, Jong-Yoon;Kim, Yong-Seok;Whang, Keum-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3B
    • /
    • pp.161-167
    • /
    • 2007
  • In this paper, we evaluate the capacity of voice over internet protocol (VoIP) services over high-speed downlink packet access (HSDPA), in which frame-bundling (FB) is incorporated to reduce the effect of relatively large headers in the IP/UDP/RTP layers. Also, a modified proportional pair (PF) packet scheduler design supporting for VoIP service is provided. The main focus of this work is the effect of FB on system outage based on delay budget in radio access networks. Simulation results show that VoIP system performance with FB scheme is highly sensitive to delay budget. We also conclude that HSDPA is attractive for transmission of VoIP if compared to the circuit switched (CS) voice that is used in WCDMA (Release'99).

Numerical investigation on seismic behaviors of midrise special moment resistant frame retrofitted by timber-base bracings

  • Ainullah-Mirzazadah, Ainullah-Mirzazadah;Sabbagh-Yazdi, Saeed-Reza
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.83-100
    • /
    • 2022
  • Timber is one of the few natural, renewable building materials and glulam is a type of engineering wood product. In the present work, timber-based braces are applied for retrofitting midrise Special Moment Resisting Frame (SMRF) using two types of timber base braces (Timber base glulam, and hybrid Timber-Steel-BRB) as alternatives for retrofitting by traditional steel bracings. The improving effects of adding the bracings to the SMRF on seismic characteristics of the frame are evaluated using load-bearing capacity, energy dissipation, and story drifts of the frame. For evaluating the retrofitting effects on the seismic performance of SMRF, a five-story SMRF is considered unretofitted and retrofitted with steel-hollow structural section (HSS) brace, Glued Laminated Timber (Glulam) brace, and hybrid Timber-Steel BRB. Using OpenSees structural analyzer, the performance are investigated under pushover, cyclic, and incremental loading. Results showed that steel-HSS, timber base Glulam, and hybrid timber-steel BRB braces have more significant roles in energy dissipation, increasing stiffness, changing capacity curves, reducing inter-story drifts, and reducing the weight of the frames, compared by steel bracing. Results showed that Hybrid BRB counteract the negative post-yield stiffness, so their use is more beneficial on buildings where P-Delta effects are more critical. It is found that the repair costs of the buildings with hybrid BRB will be less due to lower residual drifts. As a result, timber steel-BRB has the best energy dissipation and seismic performance due to symmetrical and stable hysteresis curves of buckling restrained braces that can experience the same capacities in tension and compression.

Development of an Automatic Silkworm Breeding System

  • Sang Kwun Jeong;Sung Wook Jang;Jin kook Son;Seong Wan Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.47 no.2
    • /
    • pp.79-89
    • /
    • 2023
  • This paper is about the development results of an automatic silkworm breeding system to reduce labor and time by automatically performing the works for silkworm droppings changing and feed its food. It consists of an automatic guided vehicle and a processing unit. The automatic guided vehicle transports a silkworm dropping changing frame mounted on a silkworm tray stand, and the processing unit takes over the dropping changing frame on it, removes excrement contained the droppings changing frame and feeds silkworm food. In the case of the current silkworm farming, because the breeding period for large silkworms (4 to 5 stage) is short to 14 days and the supply of mulberry leaves takes 98% of the total amount of mulberry leaves needed for breeding silkworms at this time, labor concentration is intensive, and all breeding works depends on manpower. Therefore, it was difficult to breed large silkworms on a large scale. Moreover, silkworms are bred by adding Silkworm bed (Seop) and mulberry in the silkworm tray, and their droppings changing is to separate silkworms and excrement by moving silkworm trays one by one, and the production cost increases due to the high-cost manpower for silkworm breeding. To solve this problem, technology for automating silkworm breeding has also been developed. However, there is still a limitation that silkworm feeding and droppings changing works are not suitable for mass breeding because a lot of labor and time are spent depending on manual work. Therefore, a new silkworm breeding system for breeding silkworm automatically is needed and so we developed an Automatic Silkworm Breeding System applying the droppings change frame, the inverting unit, the feeding silkworm food device and automatic guided vehicle.

Analysis of Defect Repair Cost by Work Type based on Defect Inspection of Apartments (공동주택의 하자진단에 기초한 공종별 하자보수비용의 분석)

  • Lee, Jin-Eung;Kim, Byung-Yun;Jeong, Byung-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.491-500
    • /
    • 2015
  • This study investigated defect status by work type, based on the report data of defect inspection results, acquired by consumers' request to safety inspection agencies, before the expiration of legal defect repair warranty period. In fact, the data was not acquired by centering on suppliers, namely, construction companies in relation with the defects becoming causes to increase construction cost of apartments. This study aims to provide objective and basic data for quality improvement at construction stage and for solution to defect disputes. The study results are presented below: (1) The number of defect cases occurring from architectural work among total work types were 1,986, defect occurrence rate was 62.5%, and defect repair cost was KRW $25,851/m^2$, which stood at 78.2% of the total work types. This means the defect occurrence rate and defect repair cost in architectural work are bigger than those of other work types. (2) Major defects in architectural work were revealed in the following order: cracks from frame work, inferior interior finishing work, inferior finishing work of plaster/masonry works, water leak/damage from waterproof work and withering/omission from landscape work. The total repair cost of the major selected defects was KRW $12,220/m^2$, and was analyzed to take up 37% of the total defect repair cost.

The Improvement Plan of Design Process by Case Study of Steel Structural Work (철골공사 현장조사를 통한 설계프로세스 개선방안)

  • 방성원;오승준;김진호;임남기
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.121-126
    • /
    • 2003
  • Steel frame construction is divided into subsidiary materials with column, beam, girder and bracing. After these are processed in factory for using installing in construction field. These prefabricated furniture is very important in accordance with design drawing about processing and prefabricating. In the case of design process using information transmission in blueprint, omission of material number, processing measure and finishing material, or discordance of each structure drawing and selecting incongruent structural material generated an error in the process of design. These error caused delaying tine and increasing cost and increasing safety accident in the steel-structure work operating process. therefore, design process should consider problem of operating process.

  • PDF

The Improvement Plan of Design Process by Case Study of Steel Structural Work (현장조사를 통한 철골공사 설계프로세스 개선방안)

  • Bang, Sung-Won;Kim, Jin-Ho;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.2
    • /
    • pp.111-118
    • /
    • 2003
  • Steel frame construction is divided into subsidiary materials with column, beam, girder and bracing. After these are processed in factory for using installing in construction field. These prefabricated furniture is very important in accordance with design drawing about processing and prefabricating. In the case of design process using information transmission in blueprint, omission of material number, processing measure and finishing material, or discordance of each structure drawing and selecting incongruent structural material generated an error in the process of design. These error caused delaying time and increasing cost and increasing safety accident in the steel-structure work operating process. therefore, design process should consider problem of operating process.

Relationship Analysis of Field Work in Beam-Column System Frame Work of the Precast Concrete Public Apartment Building (보-기둥구조 PC공동주택 골조공사 작업관계 분석)

  • Kim, Ki-Ho;Kim, Jin-Won;Kim, MIn-Jun;Lee, Dong-Gun;Sohn, Jeong-Rak;Lee, Bum-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.41-42
    • /
    • 2022
  • This study analyzed the process related to the linkage between on-site work targeting the middle size Precast Concrete(PC) public apartment building with beam-column system and prepared on-site works flow relationship diagram in which the wet process consists of core Critical Path(CP) to prepare a network diagram of the Precedence Diagram Method(PDM). Through this study, it is expected that it will be possible to maximize the project management capability by suggesting a method to minimize risk factors and the optimized process management of the beam-column system PC public apartment building.

  • PDF

3D finite element modelling of composite connection of RCS frame subjected to cyclic loading

  • Asl, Mohammad Hossein Habashizadeh;Chenaglou, Mohammad Reza;Abedi, Karim;Afshin, Hassan
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.281-298
    • /
    • 2013
  • Composite special moment frame is one of the systems that are utilized in areas with low to high seismicity to deal with earthquake forces. Composite moment frames are composed of reinforced concrete columns (RC) and steel beams (S); therefore, the connection region is a combination of steel and concrete materials. In current study, a three dimensional finite element model of composite connections is developed. These connections are used in special composite moment frame, between reinforced concrete columns and steel beams (RCS). Finite element model is discussed as a most reliable and low cost method versus experimental procedures. Based on a tested connection model by Cheng and Chen (2005), the finite element model has been developed under cyclic loading and is verified with experimental results. A good agreement between finite element model and experimental results was observed. The connection configuration contains Face Bearing Plates (FBPs), Steel Band Plates (SBPs) enveloping around the RC column just above and below the steel beam. Longitudinal column bars pass through the connection with square ties around them. The finite element model represented a stable response up to the first cycles equal to 4.0% drift, with moderately pinched hysteresis loops and then showed a significant buckling in upper flange of beam, as the in test model.

Semi-active control of seismically excited structures with variable orifice damper using block pulse functions

  • Younespour, Amir;Ghaffarzadeh, Hosein
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1111-1123
    • /
    • 2016
  • The present study aims at proposing an analytical method for semi-active structural control by using block pulse functions. The performance of the resulting controlled system and the requirements of the control devices are highly dependent on the control algorithm employed. In control problems, it is important to devise an accurate analytical method with less computational expenses. Block pulse functions (BPFs) set proved to be the most fundamental and it enjoyed immense popularity in different applications in the area of numerical analysis in systems science and control. This work focused on the application of BPFs in the control algorithm concerning decrease the computational expenses. Variable orifice dampers (VODs) are one of the common semi-active devices that can be used to control the response of civil Structures during seismic loads. To prove the efficiency of the proposed method, numerical simulations for a 10-story shear building frame equipped with VODs are presented. The controlled response of the frame was compared with results obtained by controlling the frame by the classical clipped-optimal control method based on linear quadratic regulator theory. The simulation results of this investigation indicated the proposed method had an acceptable accuracy with minor computational expenses and it can be advantageous in reducing seismic responses.

ECONOMICAL NONLINEAR RESPONSE ANALYSIS USING STIFFNESS MEASURE APPROACH (강성측정법을 이용한 경제적인 비선형해석)

  • 장극관
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.219-228
    • /
    • 1996
  • A method used for measuring the stiffness of hinging reinforced concrete frame structures is developed. The so called Stiffness Measure Method is used to evaluate the tangent stiffness of hinge regions while the structure is responding in nonlinear ranges. Eigenvector methods for nonlinear response have not been especially popular because of the need for regenerating eigenvectors as the time history proceeds. In the present work the eigenvectors sets and corresponding nonlinear state variables, i. e., the tangent stiffnesses of the hinge regions, are stored. There is an expectation that previously generated eigenvectors can be reused as the analysis proceeds. The stiffness measure is used to compare the current tangent stiffnesses of hinge regions with those of previously stored eigenvectors sets. Since eigenvector calculations are diminished the method is effective in reducing computational effort for reinforced concrete frame structures subjected to strong ground motions.

  • PDF