References
- AISC (2005a), "Seismic provisions for structural steel buildings", Amer. Institute Steel Construct., Inc, Chicago, IL.
- Aloisio, A., Alaggio, R., Kohler, J. and Fragiacomo, M. (2020), "Extension of generalized Bouc-Wen hysteresis modeling of wood joints and structural systems", J. Eng. Mech., 146(3), 04020001. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001722.
- Aloisio, A., Boggian, F. and Tomasi, R. (2022b), "Design of a novel seismic retrofitting system for RC structures based on asymmetric friction connections and CLT panels", Eng. Struct., 254, 113807, https://doi.org/10.1016/j.engstruct.2021.113807.
- Aloisio, A., Pelliciari, M., Sirotti, S., Boggian, F. and Tomasi, R. (2022a), "Optimization of the structural coupling between RC frames, CLT shear walls and asymmetric friction connections", Bull. Earthq. Eng., 20, 3775-3800. https://doi.org/10.1007/s10518-022-01337-8.
- ANSI/AISC 341-05 (2005), Seismic Provisions for Structural Steel Buildings.
- Antonio, D.C., Felice, C.P., Nicla, L. and Domenico, N. (2019), "Modelling of post-tensioned timber framed buildings with hysteretic bracing system preliminary analysis", IOP Conference Series:Earth and Environmental Science., 233(2), 1-10. https://doi.org/10.1088/1755-1315/233/2/022026.
- Applied Technology Council (ATC-24) (1992), Guidelines for Cyclic Testing of Components of Steel Structures, Applied Technology Council, Redwood City, CA.
- ASCE (2006), Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-05) Including Supplement No.2, American Society of Civil Engineers, Reston, VA.
- Atlayan, O. and Charney, F.A. (2014), "Hybrid buckling-restrained braced frames", J. Constr. Steel Res., 96, 95-105. https://doi.org/10.1016/j.jcsr.2014.01.001.
- Blomgren, H.E., Koppitz, J.P., Valdes, A.D. and Ko, E. (2016), "Heavy Timber Buckling-Restrained Braced Frame as solution for commercial buildings", World Conference on Timber Engineering. Vienna, Austria.
- Dong, H., He, M., Wang, X., Christopoulos, C., Li, Z. and Shu, Z. (2021), "Development of a uniaxial hysteretic model for doweltype timber joints in OpenSees", Constr. Build. Mater., 288, 123112. https://doi.org/10.1016/j.conbuildmat.2021.123112.
- FEMA-350 (2001), Seismic Design Criteria for New Moment-Resisting Steel Frame Construction, Federal Emergency Management Agency Report.
- FEMA-356 (2000) Pre-Standard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency.
- Foliente, G.C. (1993), Hysteresis Modeling of Wood Joints and Structural Systems, Master's Thesis, Virginia Polytechnic Institute and State University, America.
- Ganjavi, B., Hadinejad, A. and Jafarieh, A.H. (2019), "Evaluation of ground motion scaling methods on drift demands of energybased plastic designed steel frames under near-fault pulse-type earthquakes", Steel Compos. Struct., 32(1), 91-110. https://doi.org/10.12989/scs.2019.32.1.091.
- Gilbert, C. and Erochko, J. (2016), "Adaptation of advanced high R-factor bracing systems into heavy timber frames", World Conference of Timber Engineering., Vienna, Austria.
- Gilbert, C., Gohlich, R. and Erochko, J. (2015), "Nonlinear dynamic analysis of innovative high R-factor hybrid timbersteel buildings", 11th Canadian Conference of Engineering., Victoria, Canada.
- GUNES, N. (2020), "Comparison of monotonic and cyclic pushover analyses for the near-collapse point on a mid-rise reinforced concrete framed building", Earthq. Struct., 19(3), 189-196. https://doi.org/10.12989/eas.2020.19.3.189.
- Habibi, A., Saffari, H. and Izadpanah, M. (2019), "Optimal lateral load pattern for pushover analysis of building structures", Steel Compos. Struct., 32(1), 67-77 https://doi.org/10.12989/scs.2019.32.1.067.
- Hsiao, P.C., Lehman, D.E. and Roeder, C.W. (2012), "Improved analytical model for special concentrically braced frames", J. Constr. Steel Res., 73, 80-94. https://doi.org/10.1016/j.jcsr.2012.01.010.
- Ikeda, K. and Mahin, S.A. (1986), "Cyclic response of steel braces", J. Struct. Eng., 112(2), 342-361. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(342).
- Jiun-Wei, L. and Stephen, S.A. (2013), Experimental and Analytical Studies on the Seismic Behavior of Conventional and Hybrid Braced Frames", Ph.D. Dissertation, University of California.
- Jouneghani, H.G. and Haghollahi, A. (2020), "Experimental study on hysteretic behavior of steel moment frame equipped with elliptical brace", Steel Compos. Struct., 34(6), 891-907. https://doi.org/10.12989/scs.2020.34.6.891.
- Kaley, P. and Aamir Baig, M. (2017), "Pushover Analysis of Steel Framed Building", Civ. Eng. Environ. Tech., 4 (3), 301-306. http://www.krishisanskriti.org/Publication.html.
- Kalkan, E. and Kunnath .S.K. (2006), "Effects of Fling Step and Forward Directivity on Seismic Response of Buildings", Earthq Spectra, 22(2), 367-390. https://doi.org/10.1193/1.2192560.
- Krishna, N.S. and Hanuma P. (2020), "Pushover analysis of steel structures", Sci. Res. Eng. Trends., 6(5), 2930-2932.
- Lignos, D.G. and Krawinkler, H. (2011), "Deterioration modeling of steel components in support to collapse prediction of steel moment frames under earthquake loading", J. Struct. Eng., 137(11), 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376.
- Manjula, N.K. and Nagarajan, P. (2013), "A comparison of basic pushover methods", Int. J. Mech. Sci., 2(5), 14-19.
- Moghaddam, H. and Hajirasouliha, I. (2006), "An investigation on the accuracy of pushover analysis for estimating the seismic deformation of braced steel frames", J. Constr. Steel Res., 62(4), 343-351. https://doi.org/10.1016/j.jcsr.2005.07.009.
- Mohammadi, M., Kafi, M.A, Kheyroddin, A. and Ronagh, H.R. (2020), "Performance of innovative composite bucklingrestrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36(2), 163-177. https://doi.org/10.12989/scs.2020.36.2.163.
- Mohammadzadeh, B. and Kang, J. (2021), "Seismic analysis of high-rise steel frame building considering irregularities in plan and elevation", Steel Compos. Struct., 39(1), 65-80. https://doi.org/10.12989/scs.2021.39.1.065.
- Monteiro, S.R.S., Martins, C, Dias, A.M.P.G. and Cruz, H. (2020), "Mechanical performance of glulam products made with Portuguese poplar", Eur. J. Wood Wood Prod., 78, 1007-1015. https://doi.org/10.1007/s00107-020-01569-y.
- Moore, M. (2000), "Scotia place - 12 story apartment building: A case study of high-rise construction using wood and steel", NZ Timber Des. J., 10 (1), 5-12.
- Panyakapo, P. (2014), "Cyclic pushover analysis procedure to estimate seismic demands for buildings", Eng. Struct., 66, 10-23. https://doi.org/10.1016/j.engstruct.2014.02.001.
- Popovski, M., Prion H.G.L. and Karacabeyli E. (2003), "Shake table tests on single-storey braced timber frames", Can. J. Civ. Eng., 30 (6), 1089-1100. https://doi.org/10.1139/l03-060
- Reyes, J.C., Smith-Pardo, J.P., Yamin, L.E., Galvis, F.A., Sandoval, J.D., Gonzalez, C.D. and Correal, J.F. (2019), "Inplane seismic behavior of full-scale earthen walls with openings retrofitted with timber elements and vertical tensors", Bull. Earthq. Eng., 17(7), 4193-4215. https://doi.org/10.1007/s10518-019-00601-8.
- Seifi, M., Noorzaei, J., Jaafar, M.S. and Panah, E. (2008). Nonlinear static pushover analysis in earthquake engineering: State of development. In Proceeding of International Conference on Construction Building Technology, Kuala Lumpur.
- Shahryari, h., Karami, M. R. and Chiniforush, A.A. (2019), "Summarized IDA curves by the wavelet transform and bees optimization algorithm", Earthq. Struct., 16(2), 165-175. https://doi.org/10.12989/eas.2019.16.2.165.
- Stazi, F., Serpilli, M., Maracchini, G. and Pavone, A. (2019), "An experimental and numerical study on CLT panels used as infill shear walls for RC buildings retrofit," Constr. Build. Mater., 211, 605-616. https://doi.org/10.1016/j.conbuildmat.2019.03.196.
- Taiyari, F., Federico, M.M. and Bagheri, S. (2019), "Seismic performance assessment of steel building frames equipped with a novel type of bending dissipative braces", Steel Compos. Struct., 33(4), 525-535. https://doi.org/10.12989/scs.2019.33.4.525.
- Timmers, M. and Jacobs, A.T. (2018), "Concrete apartment tower in Los Angeles reimagined in mass timber", Eng. Struct., 167, 716-724. https://doi.org/10.1016/j.engstruct.2017.11.047.
- Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141.
- Vamvatsikos, D. and Cornell, C.A. (2004), "Applied incremental dynamic analysis", Earthq. Spectra., 20(2), 523-553. https://doi.org/10.1193/1.1737737.