• Title/Summary/Keyword: Frame Work

Search Result 805, Processing Time 0.03 seconds

Design of lightweight mansard portal frames

  • Morales-Rodriguez, P.A.;Lopez-Perales, J.A.;Moreno, M.C. Serna
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.277-285
    • /
    • 2017
  • Single-storey industrial buildings are one of the most often type of structures built among various skeletal framed steel constructions. These metallic buildings offer an exceptional opportunity to minimise the material employed, contributing to a more sustainable construction. In particular, the mansard portal frame is a typology made up of broken beams that involves different lengths and discontinuous slopes. This study aims the weight reduction of the standard mansard portal frame with design purposes by means of varying four parameters: the kink position, the eaves-apex slope, the span and the columns height. In this work, we suggest some guidelines that can improve the economical competitive capabilities of their structural design. In all the cases analysed, the joints of the portal frame are placed over the theoretical non-funicular shape to uniform loads. This allows reducing the bending moment and the shear force, but increasing the axial force. In addition, the performance of mansard and typical pitched portal frames submitted to the same boundary conditions is compared in terms of efficiency in the use of steel. In the large majority of the cases, mansard typologies are lighter than the common pitched frames and, hence, more economical.

A Study on the Development of Computer Aided Die Design System for Lead Frame, Semiconductor (반도체 리드 프레임의 금형설계 자동화 시스템 개발에 관한 연구)

  • Choe, Jae-Chan;Kim, Byeong-Min;Kim, Cheol;Kim, Jae-Hun;Kim, Chang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.123-132
    • /
    • 1999
  • This paper describes a research work of developing computer-aided design of lead frame, semiconductor, with blanking operation which is very precise for progressive working. Approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from pasticity theories, experimental results and the empirical knowledge of field experts. This system has been written in AutoLISP on the AutoCAD using a personal computer and in I-DEAS Drafting Programming Language on the I-DEAS Master Series Drafting with Workstation, HP9000/715(64). Transference of data between AutoCAD and I-DEAS Master Series Drafting is accomplished by DXF(drawing exchange format) and IGES(initial graphics exchange specification) methods. This system is composed of five modules, which are input and shape treatment, production feasibility check, strip-layout, data-conversion and die-layout modules. The process planning and Die design system is designed by considering several factors, such as complexities of blank geometry, punch profiles, and the availability of a press equipment and standard parts. This system provides its efficiecy for strip-layout, and die design for lead frame, semiconductor.

  • PDF

Toward the computational rheometry of filled polymeric fluids

  • Hwang, Wook-Ryol;Hulsen Martien A.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.171-181
    • /
    • 2006
  • We present a short review for authors' previous work on direct numerical simulations for inertialess hard particle suspensions formulated either with a Newtonian fluid or with viscoelastic polymeric fluids to understand the microstructural evolution and the bulk material behavior. We employ two well-defined bi-periodic domain concepts such that a single cell problem with a small number of particles may represent a large number of repeated structures: one is the sliding bi-periodic frame for simple shear flow and the other is the extensional bi-periodic frame for planar elongational flow. For implicit treatment of hydrodynamic interaction between particle and fluid, we use the finite-element/fictitious-domain method similar to the distributed Lagrangian multiplier (DLM) method together with the rigid ring description. The bi-periodic boundary conditions can be effectively incorportated as constraint equations and implemented by Lagrangian multipliers. The bulk stress can be evaluated by simple boundary integrals of stresslets on the particle boundary in such formulations. Some 2-D example results are presented to show effects of the solid fraction and the particle configuration on the shear and elongational viscosity along with the micro-structural evolution for both particles and fluid. Effects of the fluid elasticity has been also presented.

Effective Hand Gesture Recognition by Key Frame Selection and 3D Neural Network

  • Hoang, Nguyen Ngoc;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • This paper presents an approach for dynamic hand gesture recognition by using algorithm based on 3D Convolutional Neural Network (3D_CNN), which is later extended to 3D Residual Networks (3D_ResNet), and the neural network based key frame selection. Typically, 3D deep neural network is used to classify gestures from the input of image frames, randomly sampled from a video data. In this work, to improve the classification performance, we employ key frames which represent the overall video, as the input of the classification network. The key frames are extracted by SegNet instead of conventional clustering algorithms for video summarization (VSUMM) which require heavy computation. By using a deep neural network, key frame selection can be performed in a real-time system. Experiments are conducted using 3D convolutional kernels such as 3D_CNN, Inflated 3D_CNN (I3D) and 3D_ResNet for gesture classification. Our algorithm achieved up to 97.8% of classification accuracy on the Cambridge gesture dataset. The experimental results show that the proposed approach is efficient and outperforms existing methods.

Analysis for foundation moments in space frame-shear wall-nonlinear soil system

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1369-1389
    • /
    • 2016
  • The soil-structure interaction effect significantly influences the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic loads. In the present work, the nonlinear soil-structure analysis of a G+5 storey RC shear wall building frame having isolated column footings and founded on deformable soil is presented. The nonlinear seismic FE analysis is carried out using ANSYS software for the building with and without shear walls to investigate the effect of inclusion of shear wall on the moments in the footings due to differential settlement of soil mass. The frame is considered to behave in linear elastic manner, whereas, soil mass to behave in nonlinear manner. It is found that the interaction effect causes significant variation in the moments in the footings. The comparison of non-interaction and interaction analyses suggests that the presence of shear wall causes significant decrease in bending moments in most of the footings but the interaction effect causes restoration of the bending moments to a great extent. A comparison is made between linear and nonlinear analyses to draw some important conclusions.

Structural and Functional Measurements of a Space Truss Frame for Maintenance Works in Tunnels (터널의 유지보수공사 개선을 위한 가설 스페이스 트러스 프레임의 사용성 및 안정성 평가)

  • Lee, Dong Kyu;Kim, Do Hwan;Kim, Jin Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.92-98
    • /
    • 2012
  • This study shows details of a specific space truss frame structure devised to carry out maintenance and repair temporary works in tunnels. The purpose of this study is to verify structural safety and function of the innovative truss structure through an analysis tool, i.e.. ABAQUS, which is a suite of software application for finite element analysis and computer aided engineering. And then optimized size, i.e., thickness and diameter of truss members is evaluated in practice. In this study, construction methods in the temporary works are additionally represented by using the new space truss frame structure.

Environmental Friendly Connection of Composite Beams and Columns (친환경 층고 절감형 합성보의 보-기둥 접합부 상세 및 시공성 연구)

  • Hong, Won-Kee;Kim, Jin-Min;Park, Seon-Chee;Lim, Sun-Jae
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.113-118
    • /
    • 2007
  • The composite beam adopted in the study was designed to reduce the floor height as well as to embed the top flange of steel frame into the slab that will enable to avoid applying the fire-resistant coating and to unify the joint method with a steel frame-type. As the steel frame and bottom concrete of the beam is pre-fabricated at the factory it could reduce the overall schedule at the jobsite. Applying such composite beam system to the work is expected to provide the efficient and enhanced performance, given the current tendency of the building construction that tends to be getting higher, larger and dense. The study focused on combining the composite beam with various column systems in a bid to propose the details thereof. A desirable composite girder can be adopted depending on site conditions through the evaluation of various beam and jointing approaches. Among the column systems applied to the study are steel column, SRC column, RC-PC column and RC column. The ways of combining with the columns addressed in the study were categorized into the rigid joint, pin joint, steel frame joint and bracket type joint. Besides, the instruction for site fabrication of beam-column was added in an effort to help set up the site fabrication procedures.

Dynamic displacement tracking of a one-storey frame structure using patch actuator networks: Analytical plate solution and FE validation

  • Huber, Daniel;Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.613-632
    • /
    • 2009
  • The present paper is concerned with the design of a proper patch actuator network in order to track a desired displacement of the sidewalls of a one-storey frame structure; both, for the static and the dynamic case. Weights for each patch of the actuator network found in our previous work were based on beam theory; in the present paper a refinement of these weights by modeling the sidewalls of the frame structure as thin plates is presented. For the sake of calculating the refined weights approximate solutions of the plate equations are calculated by an extended Galerkin method. The solutions based on the analytical plate model are compared with three-dimensional Finite Element results computed in the commercially available code ANSYS. The patch actuator network is put into practice by means of four piezoelectric patches attached to each of the two sidewalls of the frame structures, to which electric voltages proportional to the analytically refined patch weights are applied. Analytical and numerical results coincide very well over a broad frequency range.

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.

Robust 3-D Motion Estimation Based on Stereo Vision and Kalman Filtering (스테레오 시각과 Kalman 필터링을 이용한 강인한 3차원 운동추정)

  • 계영철
    • Journal of Broadcast Engineering
    • /
    • v.1 no.2
    • /
    • pp.176-187
    • /
    • 1996
  • This paper deals with the accurate estimation of 3- D pose (position and orientation) of a moving object with reference to the world frame (or robot base frame), based on a sequence of stereo images taken by cameras mounted on the end - effector of a robot manipulator. This work is an extension of the previous work[1]. Emphasis is given to the 3-D pose estimation relative to the world (or robot base) frame under the presence of not only the measurement noise in 2 - D images[ 1] but also the camera position errors due to the random noise involved in joint angles of a robot manipulator. To this end, a new set of discrete linear Kalman filter equations is derived, based on the following: 1) the orientation error of the object frame due to measurement noise in 2 - D images is modeled with reference to the camera frame by analyzing the noise propagation through 3- D reconstruction; 2) an extended Jacobian matrix is formulated by combining the result of 1) and the orientation error of the end-effector frame due to joint angle errors through robot differential kinematics; and 3) the rotational motion of an object, which is nonlinear in nature, is linearized based on quaternions. Motion parameters are computed from the estimated quaternions based on the iterated least-squares method. Simulation results show the significant reduction of estimation errors and also demonstrate an accurate convergence of the actual motion parameters to the true values.

  • PDF