• 제목/요약/키워드: Frame Stress

검색결과 653건 처리시간 0.03초

Modelling inelastic hinges using CDM for nonlinear analysis of reinforced concrete frame structures

  • Rajasankar, J.;Iyer, Nagesh R.;Prasad, A. Meher
    • Computers and Concrete
    • /
    • 제6권4호
    • /
    • pp.319-341
    • /
    • 2009
  • A new formulation based on lumped plasticity and inelastic hinges is presented in this paper for nonlinear analysis of Reinforced Concrete (RC) frame structures. Inelastic hinge behaviour is described using the principles of Continuum Damage Mechanics (CDM). Member formulation contains provisions to model stiffness degradation due to cracking of concrete and yielding of reinforcing steel. Depending on its nature, cracking is classified as concentrated or distributed. Concentrated cracking is accounted through a damage variable and its growth is defined based on strain energy principles. Presence of distributed flexural cracks in a member is taken care of by modelling it as non-prismatic. Plasticity theory supported by effective stress concept of CDM is applied to describe the post-yield response. Nonlinear quasi-static analysis is carried out on a RC column and a wide two-storey RC frame to verify the formulation. The column is subjected to constant axial load and monotonic lateral load while the frame is subjected to only lateral load. Computed results are compared with those due to experiments or other numerical methods to validate the performance of the formulation and also to highlight the contribution of distributed cracking on global response.

변동하중하에 용접대차프레임의 정적 피로해석 (Static Fatigue Analysis of Welding Bogie Frame Under Variable Amplitude Loading)

  • 김철수;강주석;안승호;정광우;전영석;박춘수;김상수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.421-426
    • /
    • 2009
  • Recently, the design process for a railway bogie frame in Europe has been carried out according to the norm EN 13749. The activities in the norm EN shall demonstrate that the design of the bogie frame fulfills the acceptances of 4 steps of the program such as structural calculation, static tests, fatigue test and on-tracks tests. At the end of the acceptance program, the on-tracks tests have the aim to measure the real stress history generated in operation and to verify that they are reasonably next to those calculated and measured on the test rig. Therefore, in order to assure the safety of the railway vehicle, it is important to examined the durability of that under load histories measured from on-tracks tests. In this study, under variable amplitude loading based on the actual acceleration history, fatigue analysis of the welding bogie frame is investigated by using durability software. Moreover, the fatigue life of the frame under the loading in the norm EN fatigue test condition is evaluated and compared with the life under variable amplitude loading.

  • PDF

소형전기청소차(Small E-Sweeper) 프레임의 실험 및 수치해석을 통한 구조강도 연구 (An Experimental and Numerical Investigation of the Structural Durability of Vehicle Frames in Small Electric Sweepers)

  • 조규춘;이지선;신행우;장명균;유직수;정민관
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.116-124
    • /
    • 2021
  • In this study, the reliability of vehicle frames employed in small electric road sweepers was assessed through durability testing. The frames were tested under three conditions, whereby mechanical loads were applied to (1) the entire frame, (2) the front frame, and (3) the rear frame. The strain distributions in the loaded frames were determined through a combination of direct strain gauge measurements and supplementary numerical analysis. While subtle differences were observed between the experimental and numerical analyses, both methods successfully yielded comparable deformation patterns. Thus, the dependence of stress distribution and the state of the frame on loading conditions could be fully identified through our combined structural and numerical analysis.

가공식품 설비의 재질별 베이스 프레임에 관한 변형 및 하중 구조해석 (Structural Analysis of Deformation and Force on Base Frame by Materials of Processed Food Equipment)

  • 김기홍;김석호;최원식
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.741-746
    • /
    • 2022
  • In this paper, structural analysis was conducted on the base frame for materials of the conveyor system that automatically produces nurungji. The materials of the base frame were selected as SS400, STS304, Al6063-5. Structural analysis performed Von-Mises stress and maximum displacement for 38 hot plates in real situation, and performed weight of distribution force for yield strength, and calculated safety factor. SS400 and STS304 have little displacement, but Al6063-5 is deformed to 0.149mm, which is 2.6 times greater than other materials. However, since the safety factor was calculated as 8.5, it can be applied to the applicable food processing equipment. The weight of the distributed force for the yield strength of the materials was 17.7kN for SS400, 14.7kN for STS304, and 10.2kN for Al6063-T5. When manufacturing other processed foods with a base frame of the same size, a material suitable for the corresponding weight should be selected.

국제 철도 연맹 규정(UIC Code)에 따른 RCV 대차 프레임 구조 안전성 평가 (RCV bogie frame structure safety evaluation according to UIC Code)

  • 노상철;박지형;강신유
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.7-13
    • /
    • 2023
  • Nowadays, traffic congestion is emerging as a major problem due to the rapid population growth and the increase in automobiles. The train is a convenient means of transportation that can efficiently solve these problems. Trains have been developed in line with human aspirations for a long time, but research on safety is still insufficient. This study aims to check safety by conducting static tests and fatigue tests on bogie frames, and to help develop bogie frames in the future. For the static test, a strain gauge was attached to the point where the local stress concentration was expected beforehand, and the result value was derived, compared with existing theories, and expressed as a Goodman diagram. In the fatigue test, a total of 10 million loads were applied over three stages, and no cracks appeared in the non-destructive test conducted after each stage. Both tests were conducted according to the strict test method of the bogie frame presented by the UIC Code. It satisfied both fatigue life and strength evaluation criteria and was judged to be a bogie frame usable for safe train production.

Seismic responses of a free-standing two-story steel moment frame equipped with a cast iron-mortar sliding base

  • Chung, Yu-Lin;Kuo, Kuan-Ting;Nagae, Takuya;Kajiwara, Koichi
    • Earthquakes and Structures
    • /
    • 제17권3호
    • /
    • pp.245-256
    • /
    • 2019
  • An experimental study was conducted to evaluate the dynamic behavior of a free-standing frame equipped with a movable base system using cast iron and mortar as the bearing materials. The preliminary friction test indicated that a graphite layer developed on the interface and exhibited stable friction behavior. The friction coefficient ranged from 0.33 to 0.36 when the applied normal compression stress ranged from 2.6 to 5.2 MPa. The effect of the variation of normal compression stress would be small. Shaking table tests on the free-standing frame showed that rock, slide, and rock-slide responses occurred. The cumulative slide distance reached 381 mm under JMA Kobe wave excitation; however, only a few cyclic slides occurred at the same locations along the moving track. Most surfaces sustained single slides. Similar results can be observed in other shaking conditions. The insufficient cyclic sliding and significant rocking resulted in a few graphite layers on the mortar surfaces. Friction coefficients were generally similar to those obtained in the preliminary friction tests; however, the values fluctuated when the rocking became significant. The collisions due to rocking caused strong horizontal acceleration responses and resulted in high friction coefficient. In addition, the strong horizontal acceleration responses caused by the collisions made the freestanding specimen unable to reduce the input horizontal acceleration notably, even when slippage occurred. Compared with the counterpart fixed-base specimen, the specimen equipped with the iron-mortar base could reduce the horizontal acceleration amplification response and the structural deformation, whereas the vertical acceleration response was doubled due to collisions from rocking.

스페이스 프레임을 가진 경주용 차량의 충돌에 관한 시뮬레이션 해석 (Simulation Analysis on the Impact of Racing Car with Space Frame)

  • 조재웅;방승옥;김기선
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2341-2348
    • /
    • 2010
  • 본 논문에서는 충돌하중 하에서 스페이스 프레임을 사용하는 경주용 차량의 프레임 변형 및 응력을 분석한다. 충돌 시 변형을 최소한으로 줄이고, 취약부분을 파악하여 운전자의 안전을 확보한다. 탄소강의 물성치를 바탕으로 트러스 구조로 설계된 차량 프레임의 유한요소모델을 만들고, ANSYS 프로그램을 이용하여 정면충돌 시 속도 변화에 따른 충격량 증가가 프레임에 미치는 영향을 분석한다. 또한 정면, 측면, 후면 방향에 충돌하중을 적용하여 프레임의\ 변형을 해석한다. 정면 및 후면충돌에서는 운전석에 가해지는 영향이 적지만, 측면충돌 시 충격에 의한 변형이 운전석까지 진행된다. 이러한 변형에 대한 취약부분의 보강을 통하여 프레임의 안전성 설계를 증진시키고 시뮬레이션 해석의 결과를 실제 프레임 제작에 활용한다.

안전헬멧의 응력 및 변형거동에 관한 유한요소해석 (Finite Element Analysis on the Stress and Deformation Behaviors of a Safety Helmet)

  • 김청균
    • 한국가스학회지
    • /
    • 제13권4호
    • /
    • pp.27-32
    • /
    • 2009
  • 본 본문에서는 헬멧의 정상부에 별도로 보강뼈대를 설치하지 않은 경우에 헬멧의 두께를 변수로 헬멧 구조물에 걸리는 응력과 변형거동 특성을 유한요소법으로 해석하였다. 헬멧은 현장 작업자의 안전성과 충격에너지 흡수력을 높일 수 있도록 제작해야 하고, 헬멧을 오랫동안 착용해도 불편함이 없어야 하며, 또한 머리와 목을 보호할 수 있어야 한다. FEM 해석결과에 의하면, 외부의 충격력이 헬멧의 꼭대기에 가해졌을 때 헬멧에 작용하는 최대응력과 최대변형은 하중이 작용하는 지점에서 발생하고, 최대응력은 헬멧모체 구조물의 초기파손을 일으키는 원인으로 작용하는 것으로 나타났다. 헬멧의 두께를 4mm에서 2mm로 줄이면, 충격에너지 흡수율은 급격하게 증가하지만 헬멧에 작용하는 최대응력은 열가소성 소재의 인장강도 54.3MPa을 많이 초과하므로 파손되었다할 수 있다. 따라서 헬멧의 강도안전을 확보하기 위해서는 헬멧의 정상부에 보강뼈대를 설치하는 것이 바람직하고, 헬멧모체 구조물의 두께를 보다 두껍게 설계할 필요가 있다.

  • PDF

불규칙 삼각망과 수정된 진화론적 구조 최적화 기법을 이용한 평면구조의 응력 경로 탐색 모델의 개발 (Development of the Stress Path Search Model using Triangulated Irregular Network and Refined Evolutionary Structural Optimization)

  • 이형진;최원;이정재
    • 한국농공학회논문집
    • /
    • 제49권6호
    • /
    • pp.37-46
    • /
    • 2007
  • In designing the structure, the stress path is the basic data. But the stress path is not standardized to analysis the structure. So the one-dimensional frame element structure model with the triangle irregular network is used to solve the problem. And the refined evolutionary structural optimization(RESO) used in structural topology optimization is applied to this study. Through this process, the search method of the stress path is advanced and the burden of the calculation. is reduced.

헬리컬기어 냉간압출금형의 파손해석 (Failure Analysis of Cold Extrusion Die for the Helical Gear)

  • 권혁홍
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.79-88
    • /
    • 2001
  • This paper suggests to predict the failure of helical gear extrusion die. The basic assumption that constitutes the frame-work for any combined stress failure theory is that failure is predicted to occur when the maximum value of stress becomes equal to or exceeds the value of the same modulus that produces failure in a simple uniaxial stress test using the same material. The stresses which were calculated to each critical points are applied maximum normal stress theory and distor-tion energy theory. The theroretical analysis and experimental results for Samanta process and New process dies were com-pared.

  • PDF