• Title/Summary/Keyword: Fracture intensity

Search Result 700, Processing Time 0.02 seconds

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

In vivo Evaluation of Osteoporotic Fracture Prevention of the site to which low Intensity Ultrasound is Irradiated using Mechanical Strength Simulations (역학적 강도 분석을 이용한 저강도 초음파의 조사 부위의 골다공증 골절 방지 효과 평가)

  • Woo, Dae-Gon;Kim, Chi-Hoon;Park, Ji-Hyung;Ko, Chang-Young;Kim, Han-Sung;Kim, Jin-Man;Kim, Sang-Hee;Lim, Do-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.135-141
    • /
    • 2009
  • Purpose: The aim of present study is to evaluate a possibility of clinical application for the effect of low intensity ultrasound stimulation (LIUS) in mechanical characteristics of bone on osteoporotic fractures prevention. Materials and Methods: Eight virgin ICR mice (14 weeks old, approximate weight 25g) were ovariectomized (OVX) to induce osteoporosis. The right hind limbs were then stimulated with LIDS (US Group), whereas left hind limbs were not stimulated (CON Group). Both hind limbs of all mice were scanned by in-vivo micro-CT to acquire two-dimensional (2D) images at 0 week before stimulation and 3 weeks and 6 weeks after stimulation. Three-dimensional (3D) finite element (FE) models generated by scanned 2D images were used to determine quantitatively the effect of LIUS on strength related to bone structure. Additionally, distributions of Hounsfield units and elastic moduli, which are related to the bone quality, for the bones in the US and CON groups were determined to analyze quantitatively a degree of improvement of bone qualities achieved by LIUS. Results: The result of FE analysis showed that the structural strength in US Group was significantly increased over time (p<0.05), while that in CON Group was statistically constant over time (p>0.05). High values of Hounsfield units obtained from voxels on micro-CT images and high values of elastic moduli converted from the Hounsfield units were dominantly appeared in US Group compared with those in CON Group. Conclusion: These finding indicated that LIUS would improve the mechanical characteristics of osteoporotic bone via the effects of bone structure (bone strength) and quality (Hounsfield unit and elastic modulus). Therefore, the LIUS may decrease effectively the risk of osteoporotic fracture in clinics.

Fracture Mechanics Analysis of Steam Generator Tubes after Shot Peening (숏피닝된 증기 발생기 전열관의 파괴역학적 해석)

  • Shin, Kyu-In;Park, Jai-Hak;Jhung, Myung-Jo;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.732-738
    • /
    • 2004
  • One of the main degradation mechanisms in steam generator tubes is stress corrosion cracking induced by residual stress. The resulting damages can cause tube bursting or leakage of the primary water which contains radioactivity. Shot peening technique has been used to prevent stress corrosion crack growth in steam generator tubes. In order to investigate the shot peening effect on stress corrosion cracking stress intensity factors are calculated for the semi-elliptical surface crack which is located in residual stress region. The residual stress distribution in steam generator tubes is obtained from the simple model proposed by Frederick et al.

Experimental Analysis of Stress Intensity Factors by Combination With Moire Method and Slab Analogy (모아레法 과 스라브相似 의 複合 에 의한 應力擴大係數 의 實驗的 解析法 -有限板크랙 의 $K_I$$K_II$-)

  • 최선호;권재도;김종주;채영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.315-322
    • /
    • 1982
  • The slab analogy method was introduced in the 1920's for the first time as a new experimental stress analysis method. Notwithstanding its theoretical propriety, this method has not been recognized as efficient one because of its difficulty in practical measurement of the slab curvature. In this paper, aiming at experimental determination of two-dimensional stress intensity factors(S. I. F) of arbitrarily shaped cracks which had been regarded as almost impossible by conventional method, the slab analogy was reevaluated. Measuring of slab curvature was replaced by three simple measuring factors to overcome vital slab-analogy's shortcoming by joint use of the shadow-moire method. A determination formula was also derived from the theory of fracture mechanics. By this newly exploited method, it was found that the slab analogy still has its great advantage in determination of S.I.F. of arbitrarily shaped cracks with considerable accuracy compared with existent experimental methods.

A study on stress corrosion cracking of weld zone in 304-stainless steel (304 스테인레스鋼 熔接部의 응력부식구열에 관한 硏究)

  • 김경일;강인찬
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.35-43
    • /
    • 1987
  • The effect of post weld heat treatment (P.W.H.T) on the propagation rate of stress corrosion cracking(S.C.C) and threshold stress intensity factor ($K_{IC}.c.c$) for stress corrosion cracking of 304 stainless steel has been investigated in boiling 45% $MgCl_2$ solutions with W.O.L specimens. Specimens were precracked by turning a pair of Cr-Mo steel bolts into a machined slot at the end of the specimen. The fracture surface was examined fractographically by Scanning Electron Microscope(S.E.M.)

  • PDF

A Study on the Shot Peening on the High Temperature Fatigue Crack Propagation (쇼트피이닝 가공된 스프링강의 고온 피로균열진전 평가)

  • 박경동;정찬기;하경준
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.264-268
    • /
    • 2001
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature, low temperature and high temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room, and high temperature at $25^{\circ}C,\; 50^{\circ}C, \;100^{\circ}C,\; 150^{\circ}C,\; and\; 180^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range $\DeltaK_{th}$ in the early stage of fatigue crack growth (Region I ) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

An Implementation of Automatic Mesh Generation Algorithm in Boundary Element Method (BEM에서의 자동요소분할 알고리즘의 구현)

  • 오환섭
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.65-71
    • /
    • 1997
  • The automation of mesh generation in BEM is very important in numerical analysis field for the time and efficiency. In order to this problem, program and algorithm to achive the purpose of making input data and automation of mesh generation based in Expert System are developed in this study. This program has the function of rotating and zooming. The stress intensity factor which is a criteria of fracture mechanics is calculated and compared with other results to prove efficiency and availability of the program in result.

  • PDF

Crack Growth Behavior of Tensile Overload for Small Load Amplitude at High-Low Block Stress Ratio (고-저블럭 응력비에서 하중진폭이 작은 인장과대 하중의 균열성장 거동)

  • 김엽래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.120-126
    • /
    • 1997
  • This paper examines the crack growth behavior of 7075-T651 aluminum alloy under high-low block loading condition. The cantilever beam type specimen with a chevron notch is used in this study. The crack growth and closure are investgated by compliance method. The applied initial stress ratios are R=-0.5, R=0.0 and R=0.25 Crack length($\alpha$), effective stress intensity factor range(ΔKeff), ratio of effective stress intensity factor range(U) and crack growth rate(d$\alpha$/dN) etc. are inspected fracture mechanics estimate.

  • PDF

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length (혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동)

  • 정의효
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

Fatigue crack propagation life evaluation of an autofrettaged thick-walled cylinder (자긴가공된 두꺼운 실린더의 피로균열 전파수명평가)

  • Lee, Song-In;Kim, Jin-Yong;Jeong, Se-Hui;Go, Seung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.321-329
    • /
    • 1998
  • To ensure the structural integrity of the autofrettaged thick-walled cylinder subjected to cyclic internal pressure loading, the fatigue crack propagation life of the cylinder was evaluated. Stress intensity factors of the external cracked cylinder due to internal pressure and autofrettage loadings were calculated using the finite element method. The fatigue crack propagation lives of the cylinder based on the fracture mechanics concepts were predicted and compared to the experimental fatigue lives evaluated from the C-shaped simulation specimens. There were good correlations between the predicted and experimental fatigue lives within a factor of 3 for the single and double grooved C-shaped simulation specimens. Predicted fatigue crack propagation lives of the double grooved cylinders were about 1.5-5 times longer than those of the single grooved cylinders depending on the levels of autofrettage.