• Title/Summary/Keyword: Fractional derivative

Search Result 179, Processing Time 0.023 seconds

EXISTENCE AND UNIQUENESS RESULTS FOR CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS

  • HAMOUD, AHMED A.;ABDO, MOHAMMED S.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.163-177
    • /
    • 2018
  • This paper successfully applies the modified Adomian decomposition method to find the approximate solutions of the Caputo fractional integro-differential equations. The reliability of the method and reduction in the size of the computational work give this method a wider applicability. Also, the behavior of the solution can be formally determined by analytical approximation. Moreover, we proved the existence and uniqueness results and convergence of the solution. Finally, an example is included to demonstrate the validity and applicability of the proposed technique.

ERTAIN k-FRACTIONAL CALCULUS OPERATORS AND IMAGE FORMULAS OF GENERALIZED k-BESSEL FUNCTION

  • Agarwal, P.;Suthar, D.L.;Tadesse, Hagos;Habenom, Haile
    • Honam Mathematical Journal
    • /
    • v.43 no.2
    • /
    • pp.167-181
    • /
    • 2021
  • In this paper, the Saigo's k-fractional integral and derivative operators involving k-hypergeometric function in the kernel are applied to the generalized k-Bessel function; results are expressed in term of k-Wright function, which are used to present image formulas of integral transforms including beta transform. Also special cases related to fractional calculus operators and Bessel functions are considered.

QUALITATIVE ANALYSIS FOR FRACTIONAL-ORDER NONLOCAL INTEGRAL-MULTIPOINT SYSTEMS VIA A GENERALIZED HILFER OPERATOR

  • Mohammed N. Alkord;Sadikali L. Shaikh;Saleh S. Redhwan;Mohammed S. Abdo
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.537-555
    • /
    • 2023
  • In this paper, we consider two types of fractional boundary value problems, one of them is an implicit type and the other will be an integro-differential type with nonlocal integral multi-point boundary conditions in the frame of generalized Hilfer fractional derivatives. The existence and uniqueness results are acquired by applying Krasnoselskii's and Banach's fixed point theorems. Some various numerical examples are provided to illustrate and validate our results. Moreover, we get some results in the literature as a special case of our current results.

CAPUTO-FABRIZIO FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS VIA NEW DHAGE ITERATION METHOD

  • NADIA BENKHETTOU;ABDELKRIM SALIM;JAMAL EDDINE LAZREG;SAID ABBAS;MOUFFAK BENCHOHRA
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.3_4
    • /
    • pp.211-222
    • /
    • 2023
  • In this paper, we study the following hybrid Caputo-Fabrizio fractional differential equation: 𝐶𝓕α𝕯θϑ [ω(ϑ) - 𝕱(ϑ, ω(ϑ))] = 𝕲(ϑ, ω(ϑ)), ϑ ∈ 𝕵 := [a, b], ω(α) = 𝜑α ∈ ℝ, The result is based on a Dhage fixed point theorem in Banach algebra. Further, an example is provided for the justification of our main result.

EXISTENCE OF SOLUTION FOR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS VIA TOPOLOGICAL DEGREE METHOD

  • FAREE, TAGHAREED A.;PANCHAL, SATISH K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.16-25
    • /
    • 2021
  • This paper is studied the existence of a solution for the impulsive Cauchy problem involving the Caputo fractional derivative in Banach space by using topological structures. We based on using topological degree method and fixed point theorem with some suitable conditions. Further, some topological properties for the set of solutions are considered. Finally, an example is presented to demonstrate our results.

STUDIES ON MONOTONE ITERATIVE TECHNIQUE FOR NONLINEAR SYSTEM OF INITIAL VALUE PROBLEMS

  • Nanware, J.A.;Gadsing, M.N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.53-67
    • /
    • 2022
  • Nonlinear system of initial value problems involving R-L fractional derivative is studied. Monotone iterative technique coupled with lower and upper solutions is developed for the problem. It is successfully applied to study qualitative properties of solutions of nonlinear system of initial value problem when the function on the right hand side is nondecreasing.

RESULTS ON THE HADAMARD-SIMPSON'S INEQUALITIES

  • Asraa Abd Jaleel Husien
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.47-56
    • /
    • 2024
  • It is well known that inequalities enable us to analyze and solve complex problems with precision and efficiency. The inequalities provide powerful tools for establishing bounds, optimizing solutions, and deepening our understanding of mathematical concepts, paving the way for advancements in areas such as optimization, analysis, and probability theory. In this paper, we present some properties for Hadamard-Simpsons type inequalities in the classic integral and Riemann-Liouville fractional integral. We use the convexity of the given function and its first derivative.

CERTAIN INTEGRAL TRANSFORMS OF EXTENDED BESSEL-MAITLAND FUNCTION ASSOCIATED WITH BETA FUNCTION

  • N. U. Khan;M. Kamarujjama;Daud
    • Honam Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.335-348
    • /
    • 2024
  • This paper deals with a new extension of the generalized Bessel-Maitland function (EGBMF) associated with the beta function. We evaluated integral representations, recurrence relation and integral transforms such as Mellin transform, Laplace transform, Euler transform, K-transform and Whittaker transform. Furthermore, the Riemann-Liouville fractional integrals are also discussed.

WEIGHTED HARMONIC BERGMAN FUNCTIONS ON HALF-SPACES

  • Koo, HYUNGWOON;NAM, KYESOOK;YI, HEUNGSU
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.975-1002
    • /
    • 2005
  • On the setting of the upper half-space H of the Eu­clidean n-space, we show the boundedness of weighted Bergman projection for 1 < p < $\infty$ and nonorthogonal projections for 1 $\leq$ p < $\infty$ . Using these results, we show that Bergman norm is equiva­ lent to the normal derivative norms on weighted harmonic Bergman spaces. Finally, we find the dual of b$\_{$^{1}$.

Optimal control formulation in the sense of Caputo derivatives: Solution of hereditary properties of inter and intra cells

  • Muzamal Hussain;Saima Akram;Mohamed A. Khadimallah;Madeeha Tahir;Shabir Ahmad;Mohammed Alsaigh;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.611-623
    • /
    • 2023
  • This work considered an optimal control formulation in the sense of Caputo derivatives. The optimality of the fractional optimal control problem. The tumor immune interaction in fractional form provides an excellent tool for the description of memory and hereditary properties of inter and intra cells. So the interaction between effector-cells, tumor cells and are modeled by using the definition of Caputo fractional order derivative that provides the system with long-time memory and gives extra degree of freedom. In addiltion, existence and local stability of fixed points are investigated for discrete model. Moreover, in order to achieve more efficient computational results of fractional-order system, a discretization process is performed to obtain its discrete counterpart. Our technique likewise allows the advancement of results, such as return time to baseline that are unrealistic with current model solvers.