• Title/Summary/Keyword: Fractional derivative

Search Result 179, Processing Time 0.025 seconds

3D stress-fractional plasticity model for granular soil

  • Song, Shunxiang;Gao, Yufeng;Sun, Yifei
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.385-392
    • /
    • 2019
  • The present fractional-order plasticity models for granular soil are mainly established under the triaxial compression condition, due to its difficult in analytically solving the fractional differentiation of the third stress invariant, e.g., Lode's angle. To solve this problem, a three dimensional fractional-order elastoplastic model based on the transformed stress method, which does not rely on the analytical solution of the Lode's angle, is proposed. A nonassociated plastic flow rule is derived by conducting the fractional derivative of the yielding function with respect to the stress tensor in the transformed stress space. All the model parameters can be easily determined by using laboratory test. The performance of this 3D model is then verified by simulating multi series of true triaxial test results of rockfill.

CAPUTO DELAYED FRACTIONAL DIFFERENTIAL EQUATIONS BY SADIK TRANSFORM

  • Awad T. Alabdala;Basim N. Abood;Saleh S. Redhwan;Soliman Alkhatib
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.439-448
    • /
    • 2023
  • In this article, we are interested in studying the fractional Sadik Transform and a combination of the method of steps that will be applied together to find accurate solutions or approximations to homogeneous and non-homogeneous delayed fractional differential equations with constant-coefficient and possible extension to time-dependent delays. The results show that the process is correct, exact, and easy to do for solving delayed fractional differential equations near the origin. Finally, we provide several examples to illustrate the applicability of this method.

On a q-Extension of the Leibniz Rule via Weyl Type of q-Derivative Operator

  • Purohit, Sunil Dutt
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.4
    • /
    • pp.473-482
    • /
    • 2010
  • In the present paper we define a q-extension of the Leibniz rule for q-derivatives via Weyl type q-derivative operator. Expansions and summation formulae for the generalized basic hypergeometric functions of one and more variables are deduced as the applications of the main result.

Design of Fractional Order Controller Based on Particle Swarm Optimization

  • Cao, Jun-Yi;Cao, Bing-Gang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.775-781
    • /
    • 2006
  • An intelligent optimization method for designing Fractional Order PID(FOPID) controllers based on Particle Swarm Optimization(PSO) is presented in this paper. Fractional calculus can provide novel and higher performance extension for FOPID controllers. However, the difficulties of designing FOPID controllers increase, because FOPID controllers append derivative order and integral order in comparison with traditional PID controllers. To design the parameters of FOPID controllers, the enhanced PSO algorithms is adopted, which guarantee the particle position inside the defined search spaces with momentum factor. The optimization performance target is the weighted combination of ITAE and control input. The numerical realization of FOPID controllers uses the methods of Tustin operator and continued fraction expansion. Experimental results show the proposed design method can design effectively the parameters of FOPID controllers.

HADAMARD-TYPE FRACTIONAL CALCULUS

  • Anatoly A.Kilbas
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1191-1204
    • /
    • 2001
  • The paper is devoted to the study of fractional integration and differentiation on a finite interval [a, b] of the real axis in the frame of Hadamard setting. The constructions under consideration generalize the modified integration $\int_{a}^{x}(t/x)^{\mu}f(t)dt/t$ and the modified differentiation ${\delta}+{\mu}({\delta}=xD,D=d/dx)$ with real $\mu$, being taken n times. Conditions are given for such a Hadamard-type fractional integration operator to be bounded in the space $X^{p}_{c}$(a, b) of Lebesgue measurable functions f on $R_{+}=(0,{\infty})$ such that for c${\in}R=(-{\infty}{\infty})$, in particular in the space $L^{p}(0,{\infty})\;(1{\le}{\le}{\infty})$. The existence almost every where is established for the coorresponding Hadamard-type fractional derivative for a function g(x) such that $x^{p}$g(x) have $\delta$ derivatives up to order n-1 on [a, b] and ${\delta}^{n-1}[x^{\mu}$g(x)] is absolutely continuous on [a, b]. Semigroup and reciprocal properties for the above operators are proved.

  • PDF

SOME APPLICATIONS AND PROPERTIES OF GENERALIZED FRACTIONAL CALCULUS OPERATORS TO A SUBCLASS OF ANALYTIC AND MULTIVALENT FUNCTIONS

  • Lee, S.K.;Khairnar, S.M.;More, Meena
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.127-145
    • /
    • 2009
  • In this paper we introduce a new subclass $K_{\mu}^{\lambda},{\phi},{\eta}(n;{\rho};{\alpha})$ of analytic and multivalent functions with negative coefficients using fractional calculus operators. Connections to the well known and some new subclasses are discussed. A necessary and sufficient condition for a function to be in $K_{\mu}^{\lambda},{\phi},{\eta}(n;{\rho};{\alpha})$ is obtained. Several distortion inequalities involving fractional integral and fractional derivative operators are also presented. We also give results for radius of starlikeness, convexity and close-to-convexity and inclusion property for functions in the subclass. Modified Hadamard product, application of class preserving integral operator and other interesting properties are also discussed.

  • PDF

EXISTENCE OF SOLUTION FOR IMPULSIVE FRACTIONAL DYNAMIC EQUATIONS WITH DELAY ON TIME SCALES

  • GAO, ZHI-JUAN;FU, XU-YANG;LI, QIAO-LUAN
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.275-292
    • /
    • 2015
  • This paper is mainly concerned with the existence of solution for nonlinear impulsive fractional dynamic equations on a special time scale.We introduce the new concept and propositions of fractional q-integral, q-derivative, and α-Lipschitz in the paper. By using a new fixed point theorem, we obtain some new existence results of solutions via some generalized singular Gronwall inequalities on time scales. Further, an interesting example is presented to illustrate the theory.

MULTI-ORDER FRACTIONAL OPERATOR IN A TIME-DIFFERENTIAL FORMAL WITH BALANCE FUNCTION

  • Harikrishnan, S.;Ibrahim, Rabha W.;Kanagarajan, K.
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.119-129
    • /
    • 2019
  • Balance function is one of the joint factors to determine fall in risk theory. It helps to moderate the progression and riskiness of falls for detecting balance and fall risk factors. Nevertheless, the objective measures for balance function require expensive equipment with the assessment of any expertise. We establish the existence and uniqueness of a multi-order fractional differential equations based on ${\psi}$-Hilfer operator on time scales with balance function. This class describes the dynamic of time scales derivative. Our tool is based on the Schauder fixed point theorem. Here, sufficient conditions for Ulam-stability are given.

SEMI-ANALYTICAL SOLUTION TO A COUPLED LINEAR INCOMMENSURATE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

  • Iqbal M. Batiha;Nashat Alamarat;Shameseddin Alshorm;O. Y. Ababneh;Shaher Momani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.449-471
    • /
    • 2023
  • In this paper, we study a linear system of homogeneous commensurate /incommensurate fractional-order differential equations by developing a new semi-analytical scheme. In particular, by decoupling the system into two fractional-order differential equations, so that the first equation of order (δ + γ), while the second equation depends on the solution for the first equation, we have solved the under consideration system, where 0 < δ, γ ≤ 1. With the help of using the Adomian decomposition method (ADM), we obtain the general solution. The efficiency of this method is verified by solving several numerical examples.