• Title/Summary/Keyword: Fractal surface

Search Result 152, Processing Time 0.023 seconds

APLICATION OF FRACTAL DIMENSION ESTIMATION ALGORITMS TO EVALUATING HUMAN SKIN STATE

  • Araghy, Ali Parchamy;Sato, Mie;Kasuga, Masao
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.655-658
    • /
    • 2009
  • Fractal dimension has been used for texture analysis as it is highly correlated with human perception of surface roughness and applied to quantifying the structures of wide range of objects in biology and medicine. On the other hand, the evaluation of the human skin state is based solely on the subjective assessment of clinicians; this assessment may vary from moment to moment and from rater to rater. Therefore we attempt to analysis of skin texture image using fractal dimension and discuss its application to evaluating human skin state. It can be helpful for extracting human features and also can be useful for detection of many human skin diseases. This paper presents a method to calculate fractal dimension of skin with use of camera lens magnification. We take multiple pictures frequently from skin with different camera lens magnification as a magnification factor of fractal set, and counting the number of objects (cells) in each picture as a number of self similar pieces of fractal set.

  • PDF

The Principles of Fractal Geometry and Its Applications for Pulp & Paper Industry (펄프·제지 산업에서의 프랙탈 기하 원리 및 그 응용)

  • Ko, Young Chan;Park, Jong-Moon;Shin, Soo-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.177-186
    • /
    • 2015
  • Until Mandelbrot introduced the concept of fractal geometry and fractal dimension in early 1970s, it has been generally considered that the geometry of nature should be too complex and irregular to describe analytically or mathematically. Here fractal dimension indicates a non-integer number such as 0.5, 1.5, or 2.5 instead of only integers used in the traditional Euclidean geometry, i.e., 0 for point, 1 for line, 2 for area, and 3 for volume. Since his pioneering work on fractal geometry, the geometry of nature has been found fractal. Mandelbrot introduced the concept of fractal geometry. For example, fractal geometry has been found in mountains, coastlines, clouds, lightning, earthquakes, turbulence, trees and plants. Even human organs are found to be fractal. This suggests that the fractal geometry should be the law for Nature rather than the exception. Fractal geometry has a hierarchical structure consisting of the elements having the same shape, but the different sizes from the largest to the smallest. Thus, fractal geometry can be characterized by the similarity and hierarchical structure. A process requires driving energy to proceed. Otherwise, the process would stop. A hierarchical structure is considered ideal to generate such driving force. This explains why natural process or phenomena such as lightning, thunderstorm, earth quakes, and turbulence has fractal geometry. It would not be surprising to find that even the human organs such as the brain, the lung, and the circulatory system have fractal geometry. Until now, a normal frequency distribution (or Gaussian frequency distribution) has been commonly used to describe frequencies of an object. However, a log-normal frequency distribution has been most frequently found in natural phenomena and chemical processes such as corrosion and coagulation. It can be mathematically shown that if an object has a log-normal frequency distribution, it has fractal geometry. In other words, these two go hand in hand. Lastly, applying fractal principles is discussed, focusing on pulp and paper industry. The principles should be applicable to characterizing surface roughness, particle size distributions, and formation. They should be also applicable to wet-end chemistry for ideal mixing, felt and fabric design for papermaking process, dewatering, drying, creping, and post-converting such as laminating, embossing, and printing.

Fractal Feature Extraction

  • Jay Feng;Lin, Wei-Chung;Rhee, Sang-Yong;Park, Jae-Yun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.624-627
    • /
    • 2003
  • To achieve accurate and efficient extraction of the fractal feature, a progressive extraction method is developed. After establishing the boundaries of the targeted surface by enclosing it with internal and external covers, it determines the features of the surface by calculating the characteristics of such covers.

  • PDF

Rockwell Hardness Modeling Using Volumetric Variable (체적변수를 이용한 로크웰 경도 모델링)

  • Chin, Do-Hun;Oh, Sang-Rok;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.394-401
    • /
    • 2013
  • A new Rockwell hardness (HRC) model using a volumetric parameter by a least square and fractal interpolation method is suggested. The results are also investigated in comparison to real measured hardness data. For this purpose, the measurement of an indented volume is performed using a confocal laser scanning microscope (CLSM), and the captured height encoded image (HEI) is used as an original surface for the calculation of the indented volume. After configuring the surface, the constructed volume is calculated and used as an independent variable for HRC hardness modeling. The hardness model is established using an experimental modeling technique involving a least square algorithm and fractal interpolating model, and this suggested model can be used to reliably predict the Rockwell hardness. These techniques can also be applied to the modeling of the Brinnell and Vickers hardnesses using a volumetric variable.

The Research of Fatigue-Crack Initiation and Propagation for S35C Steel (S35C강의 피로균열 발생 및 진전에 관한 연구)

  • 진영준
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • Surface crack growth characteristics and influence of the stress amplitude in rotary bending fatigue test were evaluated for annealed S35C steel, and than fractal dimensions of fatigue crack paths estimated using the box counting method. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Crack growth rate ds/dN and db/dN (s : half crack length at the surface crack, b : crack depth) depended on stress amplitude (${\Delta}{\sigma}/2$), stress intensity factor range (${\Delta}K_A, {\Delta}K_C$) and crack length. (2) At the effect area of 0.3 mm hole notch (s<0.5 mm) crack growth rate did not depend on these factors. (3) The fractal dimensions (D) increased with stress amplitude (${\Delta}{\sigma}/2$) but decreased with cyclic number.

  • PDF

A NUMERICAL STUDY ON CHARACTERISTICS OF FLUID FLOW AND SOLUTE TRANSPORT IN A SELF-AFFINE VARIABLE-APERTURE FRACTURE UNDER NORMAL COMPLIANCE EFFECT

  • JEONG WOOCHANG;HWANG MANHA;KO ICKHWAN;SONG JAIWOO
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.49-61
    • /
    • 2005
  • This paper presents the numerical study to examine characteristics of fluid flow and solute transport in a rough fracture subject to effective normal stresses. The aperture distribution is generated by using the self-affine fractal model. In order to represent a nonlinear relationship between the supported normal stress and the fracture aperture, we combine a simple mechanical model with the local flow model. The solute transport is simulated using the random walk particle following algorithm. Results of numerical simulations show that the flow is significantly affected by the geometry of aperture distribution varying with the effective normal stress level while it is slightly affected by the fractal dimension that determines the degree of the fracture surface roughness. However, solute transport is influenced by the effective normal stress as well as the fracture surface roughness.

  • PDF

Fractal-Based Interpolation of Sea Floor Terrains (프랙탈에 기초한 해저지형의 보간)

  • Lee, Hyun-Shik;Park, Dong-Jin;Jin, Gang-Gyoo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.451-456
    • /
    • 2009
  • In this paper, we presents an algorithm which generates its high-resolution DTM using a low-resolution DTM of the sea floor terrain and fractal theory. The fractal dimension of each patch region divided from the DTM is extracted and then with this information and original data, each cell region in the patch is interpolated using the midpoint displacement method and a median filter is incorporated to generate natural and smooth sea floor surface. The effectiveness of the proposed algorithm is tested on a fractal terrain map.

Generation of Realistic Terrain Based on LOD Simplification and Fractal

  • Min, Hu;Zhen, Wang
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.37-40
    • /
    • 2009
  • Based on the study of Digital Elevation Simplification Model and fractal theory, this paper put forward a new method to simulate complex terrain. That use simplified DEM data to construct terrain frame based on the quad tree at first, and then use fractal to generate the details of every node of the tree. In the process of construction, the LOD theory is used to simplify the terrain and get its typical data. According to the change of view position and direction, the paper gives a new way to judge the visibility of the surface patch. Experimental results show that this algorithm is simple, efficient and supports the real time dynamic simulation of terrain model.

The New Estimation of Surface Discharge Insulation Using Fractal Dimension (프랙탈 차원을 이용한 SD절연의 새로운 평가)

  • Lim, Jang-Seob;Han, Jae-Hong;Kim, Duck-Keun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.55-58
    • /
    • 2000
  • Fractal mathematics is being highlighted as a research method for classification of image. But the application of Fractal dimension(FD) has been required the complicated calculation method because of its complex repetition progressing. In this paper, it has been developed the new approach method to express the Fractal Dimension(FD) for aging level calculation and estimation system of outside insulator using special image processing algorithm. As a result after FD testing, the recognized aging estimation of FD has a very characteristics compared to the conventional visual inspection.

  • PDF

Development of a GIUH Model Based on River Fractal Characteristics (하천의 프랙탈 특성을 고려한 지형학적 순간단위도 개발(I))

  • Hong, Il-Pyo;Go, Jae-Ung
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.565-577
    • /
    • 1999
  • The geometric patterns of a stream network in a drainage basin can be viewed as a "fractal" with fractal dimensions. Fractals provide a mathematical framework for treatment of irregular, ostensively complex shapes that show similar patterns or geometric characteristics over a range of scale. GIUH (Geomorphological Instantaneous Unit Hydrograph) is based on the hydrologic response of surface runoff in a catchment basin. This model incorporates geomorphologic parameters of a basin using Horton's order ratios. For an ordered drainage system, the fractal dimensions can be derived from Horton's laws of stream numbers, stream lengths and stream areas. In this paper, a fractal approach, which is leading to representation of a 2-parameter Gamma distribution type GIUH, has been carried out to incorporate the self similarity of the channel networks based on the high correlations between the Horton's order ratios. The shape and scale parameter of the GIUH-Nash model of IUH in terms of Horton's order ratios of a catchment proposed by Rosso(l984J are simplified by applying the fractal dimension of main stream length and channel network of a river basin. basin.

  • PDF