• Title/Summary/Keyword: Fr$\acute{e}$chet derivative

Search Result 13, Processing Time 0.018 seconds

ON A LOCAL CHARACTERIZATION OF SOME NEWTON-LIKE METHODS OF R-ORDER AT LEAST THREE UNDER WEAK CONDITIONS IN BANACH SPACES

  • Argyros, Ioannis K.;George, Santhosh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.513-523
    • /
    • 2015
  • We present a local convergence analysis of some Newton-like methods of R-order at least three in order to approximate a solution of a nonlinear equation in a Banach space. Our sufficient convergence conditions involve only hypotheses on the first and second $Fr{\acute{e}}chet$-derivative of the operator involved. These conditions are weaker that the corresponding ones given by Hernandez, Romero [10] and others [1], [4]-[9] requiring hypotheses up to the third $Fr{\acute{e}}chet$ derivative. Numerical examples are also provided in this study.

NEWTON'S METHOD FOR SOLVING A QUADRATIC MATRIX EQUATION WITH SPECIAL COEFFICIENT MATRICES

  • Seo, Sang-Hyup;Seo, Jong-Hyun;Kim, Hyun-Min
    • Honam Mathematical Journal
    • /
    • v.35 no.3
    • /
    • pp.417-433
    • /
    • 2013
  • We consider the iterative solution of a quadratic matrix equation with special coefficient matrices which arises in the quasibirth and death problem. In this paper, we show that the elementwise minimal positive solvent of the quadratic matrix equations can be obtained using Newton's method if there exists a positive solvent and the convergence rate of the Newton iteration is quadratic if the Fr$\acute{e}$chet derivative at the elementwise minimal positive solvent is nonsingular. Although the Fr$\acute{e}$chet derivative is singular, the convergence rate is at least linear. Numerical experiments of the convergence rate are given.

EXPANDING THE APPLICABILITY OF SECANT METHOD WITH APPLICATIONS

  • Magrenan, A. Alberto;Argyros, Ioannis K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.865-880
    • /
    • 2015
  • We present new sufficient convergence criteria for the convergence of the secant-method to a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center-Lipschitz instead of just Lipschitz conditions in the convergence analysis. The new convergence criteria can always be weaker than the corresponding ones in earlier studies. Numerical examples are also provided in this study to solve equations in cases not possible before.

EXTENDING THE APPLICATION OF THE SHADOWING LEMMA FOR OPERATORS WITH CHAOTIC BEHAVIOUR

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.27 no.5
    • /
    • pp.521-525
    • /
    • 2011
  • We use a weaker version of the celebrated Newton-Kantorovich theorem [3] reported by us in [1] to find solutions of discrete dynamical systems involving operators with chaotic behavior. Our results are obtained by extending the application of the shadowing lemma [4], and are given under the same computational cost as before [4]-[6].

LOCAL CONVERGENCE OF NEWTON-LIKE METHODS FOR GENERALIZED EQUATIONS

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.425-431
    • /
    • 2009
  • We provide a local convergence analysis for Newton-like methods for the solution of generalized equations in a Banach space setting. Using some ideas of ours introduced in [2] for nonlinear equations we show that under weaker hypotheses and computational cost than in [7] a larger convergence radius and finer error bounds on the distances involved can be obtained.

STUDY OF OPTIMAL EIGHTH ORDER WEIGHTED-NEWTON METHODS IN BANACH SPACES

  • Argyros, Ioannis K.;Kumar, Deepak;Sharma, Janak Raj
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.677-693
    • /
    • 2018
  • In this work, we generalize a family of optimal eighth order weighted-Newton methods to Banach spaces and study its local convergence to approximate a locally-unique solution of a system of nonlinear equations. The convergence in this study is shown under hypotheses only on the first derivative. Our analysis avoids the usual Taylor expansions requiring higher order derivatives but uses generalized Lipschitz-type conditions only on the first derivative. Moreover, our new approach provides computable radius of convergence as well as error bounds on the distances involved and estimates on the uniqueness of the solution based on some functions appearing in these generalized conditions. Such estimates are not provided in the approaches using Taylor expansions of higher order derivatives which may not exist or may be very expensive or impossible to compute. The convergence order is computed using computational order of convergence or approximate computational order of convergence which do not require usage of higher derivatives. This technique can be applied to any iterative method using Taylor expansions involving high order derivatives. The study of the local convergence based on Lipschitz constants is important because it provides the degree of difficulty for choosing initial points. In this sense the applicability of the method is expanded. Finally, numerical examples are provided to verify the theoretical results and to show the convergence behavior.

FINDING THE SKEW-SYMMETRIC SOLVENT TO A QUADRATIC MATRIX EQUATION

  • Han, Yin-Huan;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.587-595
    • /
    • 2012
  • In this paper we consider the quadratic matrix equation which can be defined be $$Q(X)=AX^2+BX+C=0$$, where X is a $n{\times}n$ unknown real matrix; A,B and C are $n{\times}n$ given matrices with real elements. Newton's method is considered to find the skew-symmetric solvent of the nonlinear matrix equations Q(X). We also show that the method converges the skew-symmetric solvent even if the Fr$\acute{e}$chet derivative is singular. Finally, we give some numerical examples.

NEWTON'S METHOD FOR SYMMETRIC AND BISYMMETRIC SOLVENTS OF THE NONLINEAR MATRIX EQUATIONS

  • Han, Yin-Huan;Kim, Hyun-Min
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.755-770
    • /
    • 2013
  • One of the interesting nonlinear matrix equations is the quadratic matrix equation defined by $$Q(X)=AX^2+BX+C=0$$, where X is a $n{\times}n$ unknown real matrix, and A, B and C are $n{\times}n$ given matrices with real elements. Another one is the matrix polynomial $$P(X)=A_0X^m+A_1X^{m-1}+{\cdots}+A_m=0,\;X,\;A_i{\in}\mathbb{R}^{n{\times}n}$$. Newton's method is used to find the symmetric and bisymmetric solvents of the nonlinear matrix equations Q(X) and P(X). The method does not depend on the singularity of the Fr$\acute{e}$chet derivative. Finally, we give some numerical examples.