• 제목/요약/키워드: FoxO4

검색결과 27건 처리시간 0.018초

Low Expression of the FoxO4 Gene may Contribute to the Phenomenon of EMT in Non-small Cell Lung Cancer

  • Xu, Ming-Ming;Mao, Guo-Xin;Liu, Jian;Li, Jian-Chao;Huang, Hua;Liu, Yi-Fei;Liu, Jun-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권9호
    • /
    • pp.4013-4018
    • /
    • 2014
  • Because of its importance in tumor invasion and metastasis, the epithelial-mesenchymal transition (EMT) has become a research focus in the field of cancer. Recently, evidence has been presented that FoxO4 might be involved in EMT. Our study aimed to detect the expression of FoxO4, E-cadherin and vimentin in non-small cell lung cancers (NSCLCs). We also investigated clinical features and their correlations with the markers. In our study, FoxO4, E-cadherin and vimentin were assessed by immunohistochemistry in a tissue microarray (TMA) containing 150 cases of NSCLC. In addition, the expression level of FoxO4 protein was determined by Western blotting. The percentages of FoxO4, E-cadherin and vimentin positive expression in NSCLCs were 42.7%, 38.7% and 55.3%, respectively. Immunoreactivity of FoxO4 was low in NSCLC when compared with paired normal lung tissues. There were significant correlations between FoxO4 and TNM stage (P<0.001), histological differentiation (P=0.004) and lymph node metastasis (P<0.001), but no significant links with age (P=0.323), gender (P=0.410), tumor size (P=0.084), smoking status (P=0.721) and histological type (P=0.281). Our study showed that low expression of FoxO4 correlated with decreased expression of E-cadherin and elevated expression of vimentin. Cox regression analysis indicated FoxO4 to be an independent prognostic factor in NSCLC (P=0.046). These data suggested that FoxO4 might inhibit the process of EMT in NSCLC, and might therefore be a target for therapy.

The Porcine FoxO1, FoxO3a and FoxO4 Genes: Cloning, Mapping, Expression and Association Analysis with Meat Production Traits

  • Yu, Jing;Zhou, Quan-Yong;Zhu, Meng-Jin;Li, Chang-Chun;Liu, Bang;Fan, Bin;Zhao, Shu-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.627-632
    • /
    • 2007
  • FoxO1, FoxO3a and FoxO4 belong to the FoxO gene family, which play important roles in the PI3K/PKB pathway. In this study, we cloned the porcine FoxO1, FoxO3a and FoxO4 sequences and assigned them to SSC11p11-15, SSC1p13 and SSC xq13 using somatic cell hybrid panel (SCHP) and radiation hybrid panel (IMpRH). RT-PCR results showed that these three genes are expressed in multiple tissues. Sequencing of PCR products from different breeds identified a synonymous T/C polymorphism in exon 2 of FoxO3a. This FoxO3a single nucleotide polymorphism (SNP) can be detected by AvaII restriction enzyme. The allele frequencies of this SNP were investigated in Dahuabai, Meishan, Tongcheng, Yushan, Large White, and Duroc pigs. Association of the genotypes with growth and carcass traits showed that different genotypes of FoxO3a were associated with carcass length and backfat thickness between 6th and 7th ribs (BTR) and drip loss (p<0.05).

Defect of SIRT1-FoxO3a axis is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated cellular senescence and nematode aging

  • Ham, Hye-Jun;Park, Jeong-Woo;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제52권4호
    • /
    • pp.265-270
    • /
    • 2019
  • We investigated whether SIRT1 is associated with reactive oxygen species (ROS) accumulation during CK2 downregulation-mediated senescence. SIRT1 overexpression suppressed ROS accumulation, reduced transcription of FoxO3a target genes, and nuclear export and acetylation of FoxO3a, which were induced by CK2 downregulation in HCT116 and MCF-7 cells. Conversely, overexpression of a dominant-negative mutant SIRT1 (H363Y) counteracted decreased ROS levels, increased transcriptional activity of FoxO3a, and increased nuclear import and decreased acetylation of FoxO3a, which were induced by CK2 upregulation. CK2 downregulation destabilized SIRT1 protein via an ubiquitin-proteasome pathway in human cells, whereas CK2 overexpression reduced ubiquitination of SIRT1. Finally, the SIRT1 activator resveratrol attenuated the accumulation of ROS and lipofuscin as well as lifespan shortening, and reduced expression of the DAF-16 target gene sod-3, which were induced by CK2 downregulation in nematodes. Altogether, this study demonstrates that inactivation of the SIRT1-FoxO3a axis, at least in part, is involved in ROS generation during CK2 downregulation-mediated cellular senescence and nematode aging.

Molecular Cloning and Expression of Forkhead Transcription Factor O1 Gene from Pig Sus scrofa

  • Pang, Weijun;Sun, Shiduo;Bai, Liang;Yang, Gongshe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권4호
    • /
    • pp.499-509
    • /
    • 2008
  • Foxo1 plays an important role in the integration of hormone-activated signaling pathways with the complex transcriptional cascade that promotes preadipocyte differentiation of clonal cell lines from rodents. We isolated the full-length cDNA of porcine FoxO1 gene using RACE, confirmed by visual Northern blotting. The deduced amino acids indicated 94% and 90% identities with the corresponding human and mice aa. Analysis of the aa sequence, showed that it included a Forkhead domain (aa 167-247), a transmembrane structure domain (aa 90-113), a LXXLL motif (aa 469-473), and 51 Ser, 8 Thr, and 4 Tyr phosphorylation sites, indicating a potential important role for FoxO1 transcriptional activity in vivo. Using the IMpRH panel, we mapped FoxO1 gene to chromosome 11p13. Our data provide basic molecular information useful for the further investigation on the function of FoxO1 gene. Time-course analysis of FoxO1 expressions indicated that levels of mRNA and protein gradually increased from day 0 to 3, and it reached almost maximal level at day 3, then decreased from day 5 to 7 in porcine primary preadipocyte differentiation. After induction by IGF-1, GPDH activity and accumulation of lipid increased, however, expressions of FoxO1 mRNA and protein were inhibited in a dose dependent manner. These results suggest that FoxO1 takes part in porcine preadipocyte differentiation and expressions of FoxO1 were regulated by IGF-1.

전자파에 노출된 생쥐에서 운동량에 따른 뇌의 유전자 변화 (The Gene Expression Level Differences associated with Exercise in the Mouse Brain exposed to Radiofrequency Radiation)

  • 이민선
    • 디지털융복합연구
    • /
    • 제18권1호
    • /
    • pp.241-247
    • /
    • 2020
  • 전자파 노출이 자발운동에 따른 뇌의 유전자 발현에 미치는 영향을 10 주간 4그룹 즉, 정상 그룹, 자발운동 그룹, 전자파 노출 그룹, 전자파 노출 및 자발운동 그룹으로 나누어 조사하였다. 선조체(striata)와 시상하부(hypothalamus)에서 RT-PCR을 수행하였으며, 타이로신수산화효소(TH), FoxO3a, AMPKα, mRNA 발현을 조사하였다. 선조체에서 TH mRNA 발현은 자발운동과 전자파 노출 조건에서 각각 감소하였고, 전자파 노출 및 자발운동 그룹에서 더 많이 감소되었다. 이 결과는 전자파 노출 및 자발운동 그룹에서의 운동량 감소가 선조체에서 도파민이 감소할 수 있음을 시사한다. 선조체에서 FoxO3a mRNA 발현은 자발운동 그룹에서 증가했지만, 전자파 노출 및 자발운동 그룹은 현저히 감소했다. 시상하부에서는 TH mRNA 유전자 발현은 전자파 노출을 받은 자발운동 그룹에서 감소가 유의했으며, FoxO3a mRNA는 발현의 현저한 증가가 있었다. 전자파가 기억력에 미치는 영향도 밝히기 위해 해마에서의 여러 단백질들의 발현을 추후 조사할 것이다.

마우스 C2C12 근관세포에서 AICAR로 유도된 근위축에 미치는 오미자 추출물의 영향 (Ethanol Extract of Schisandra chinensis (Turcz.) Baill. Reduces AICAR-induced Muscle Atrophy in C2C12 Myotubes)

  • 강영순;한민호;박철;홍수현;황혜진;김병우;김철민;최영현
    • 생명과학회지
    • /
    • 제25권3호
    • /
    • pp.293-298
    • /
    • 2015
  • 근위축은 근육 단백질 합성의 저하와 근육 단백질의 분해 증가에 따른 근섬유의 감소에 의한 근육량이 감소되는 현상이다. 오미자(Schisandrae Fructus, fruits of Schisandra chinensis (Turcz.) Baillon)는 오랫동안 전통의학에서 강장제로서 널리 사용되어 왔다. 비록 다양한 질병 연관 오미자의 생리활성 효능이 폭넓게 연구되어져 왔으나 근육 질환 관련 연구는 매우 제한적으로 이루어져 왔다. 본 연구에서는 오미자 에탄올 추출물(SF)이 AMPK 활성인자 AICAR 처리에 의한 C2C12 근관세포의 근위축 모델계를 이용하여 근위축 억제 효능을 가지는지의 여부와 관련 기전의 해석을 시도하였다. AICAR 처리는 근단백질 분해 연관 ubiquitin ligase muscle RING finger-1 (MuRF-1)의 발현을 전사 수준에서 증가시켰고, MuRF-1 조절 전사인자의 하나인 forkhead box O3a (FoxO3a) 단백질의 인산화를 증가시켰으며, 이러한 변화는 근위축과 연관된 C2C12 근관세포의 형태적 변형과 동반된 현상이었다. 그러나 SF의 전처리에 의하여, AICAR에 의하여 유도된 근위축성 형태변화를 억제하였으며, MuRF-1의 발현과 FoxO3a의 활성화를 억제시켰다. 본 연구의 결과는 SF가 AICAR 처리에 의한 C2C12 근관세포의 근위축을 AMPK 및 FoxO3a 신호전달계 조절을 통하여 억제하였음을 보여주는 것으로 오미자는 근기능 향상을 위한 식의 약 소재로서의 개발 가능성이 매우 높음을 시사하여 준다.

C2C12 myotube의 산화적 손상에 대한 혼합 한약재 추출물(HME)의 Akt/FoxO3 신호 조절을 통한 보호 효과 (Protective Effects of Medicinal Herbal Mixture (HME) through Akt/FoxO3 Signal Regulation in Oxidative Damaged C2C12 Myotubes)

  • 김소영;최문열;이은탁;추성태;김미려
    • 대한본초학회지
    • /
    • 제37권4호
    • /
    • pp.31-38
    • /
    • 2022
  • Objectives : In this study, we investigated the synergistic protective effects of medicinal herbal mixture (HME) including Mori Ramulus (MR), Acanthopanacis Cortex (AC), Eucommiae Cortex (EC), and Black soybean (BS) in C2C12 cells, mouse myoblasts. Methods : Effects of HME on cell viability of C2C12 myoblasts were monitored by MTT assay. Anti-atrophic activity of HME was determined in myoblasts and myotubes under oxidative stress by H2O2. C2C12 myoblasts were differentiated into myotubes in a medium containing 2% horse serum for 6 days. After that, we measured that expression of MyoD and myogenine, the myogenic regulatory factors, to identify the mechanism of inhibiting muscle atophy after HME treatment. In addition, suppression of phosphorylation of Akt, FoxO3a and MARF-1, transcription factors of degradation proteins were analyzed via western blotting. Results : As a result of MTT, HME there was no show cytotoxicity up to a concentration of 1 mg/ml. The cytoprotective effects on oxidative stressed myoblast and myotube was better in HME extract than those of MR, AC, EU, and BS, respectively. HME treatment in Myotube induced by oxidative stress after H2O2 treatment increased Myo D, Myogenine activation, and Akt, FoxO3a phosphorylation and decreased expression of MuRF-1. As the results, HME has synergistic effects on protection against proteolysis of C2C12 myotubes through activation of the Akt signaling pathway under oxidative stress. Conclusions : These results suggest that HME may also be useful as a preventing and treating material for skeletal muscle atrophy caused by age-related diseases.

저선량 방사선 조사가 배양 세포에 미치는 효과 (The Effects of MDCK Cell on Low Dose Irradiation)

  • 이송재;장재철
    • 대한방사선치료학회지
    • /
    • 제9권1호
    • /
    • pp.106-112
    • /
    • 1997
  • MDCK 세포를 한국 세포주 은행으로부터 분주 받아 배양한 후 저선량 gamma선 조사에 대한 세포수준에서 방사선 효과를 알아보기 위하여 세포 증식능의 변화, Superoxide dismutase(SOD)와 catalase, FOX I의 함량 변화를 측정 검토하였다. 그결과, 저선량의 방사선를 조사했을 때, 세포의 증식능은 방사선 조사후 2시간에서 10 cGy는 $95.1\%$, 50cGy는 $96.4\%$로 대조군보다 약간의 감소가 나타났으나, 24시간 후에서 10cGy는 $96.7\%$, 50cGy는 $73.1\%$로 선량이 증가함에 따라 세포 증식능은 감소하였다. 저선량 조사에 의한 MDCK 세포의 SOD 활성도는 전반적으로 증가하였고, Mn-SOD 활성 역시 증가하였다. 세포 내의 $H_{2}O_2$의 양을 측정한 FOX I에서 선량이 증가함에 따라 감소하였으며 catalase 효소의 함량은 대조군보다 증가되는 경향을 보였다. 이와 같은 결과로 볼 때 저선량 방사선 조사에 대한 효과는 세포내부의 자체적인 방어기작의 발현으로 인한 결과라고 생각된다.

  • PDF

A Mixture of Morus alba and Angelica keiskei Leaf Extracts Improves Muscle Atrophy by Activating the PI3K/Akt/mTOR Signaling Pathway and Inhibiting FoxO3a In Vitro and In Vivo

  • Hyun Hwangbo;Min Yeong Kim;Seon Yeong Ji;Da Hye Kim;Beom Su Park;Seong Un Jeong;Jae Hyun Yoon;Tae Hee Kim;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1635-1647
    • /
    • 2023
  • Muscle atrophy, which is defined as a decrease in muscle mass and strength, is caused by an imbalance between the anabolism and catabolism of muscle proteins. Thus, modulating the homeostasis between muscle protein synthesis and degradation represents an efficient treatment approach for this condition. In the present study, the protective effects against muscle atrophy of ethanol extracts of Morus alba L. (MA) and Angelica keiskei Koidz. (AK) leaves and their mixtures (MIX) were evaluated in vitro and in vivo. Our results showed that MIX increased 5-aminoimidazole-4-carboxamide ribonucleotide-induced C2C12 myotube thinning, and enhanced soleus and gastrocnemius muscle thickness compared to each extract alone in dexamethasone-induced muscle atrophy Sprague Dawley rats. In addition, although MA and AK substantially improved grip strength and histological changes for dexamethasone-induced muscle atrophy in vivo, the efficacy was superior in the MIX-treated group. Moreover, MIX further increased the expression levels of myogenic factors (MyoD and myogenin) and decreased the expression levels of E3 ubiquitin ligases (atrogin-1 and muscle-specific RING finger protein-1) in vitro and in vivo compared to the MA- and AK-alone treatment groups. Furthermore, MIX increased the levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) that were reduced by dexamethasone, and downregulated the expression of forkhead box O3 (FoxO3a) induced by dexamethasone. These results suggest that MIX has a protective effect against muscle atrophy by enhancing muscle protein anabolism through the activation of the PI3K/Akt/mTOR signaling pathway and attenuating catabolism through the inhibition of FoxO3a.

Conessine Treatment Reduces Dexamethasone-Induced Muscle Atrophy by Regulating MuRF1 and Atrogin-1 Expression

  • Kim, Hyunju;Jang, Minsu;Park, Rackhyun;Jo, Daum;Choi, Inho;Choe, Joonho;Oh, Won Keun;Park, Junsoo
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권4호
    • /
    • pp.520-526
    • /
    • 2018
  • Conessine, a steroidal alkaloid, is a potent histamine H3 antagonist with antimalarial activity. We recently reported that conessine treatment interferes with $H_2O_2$-induced cell death by regulating autophagy. However, the cellular signaling pathways involved in conessine treatment are not fully understood. Here, we report that conessine reduces muscle atrophy by interfering with the expression of atrophy-related ubiquitin ligases MuRF-1 and atrogin-1. Promoter reporter assay revealed that conessine treatment inhibits FoxO3a-dependent transcription, $NF-{\kappa}B$-dependent transcription, and p53-dependent transcription. We also showed by quantitative RT-PCR and western blot assays that conessine treatment reduced dexamethasone-induced expression of MuRF1 and atrogin-1. Finally, we demonstrated that conessine treatment reduced dexamethasone-induced muscle atrophy using differentiated C2C12 cells. These results collectively suggest that conessine is potentially useful in the treatment of muscle atrophy.