DOI QR코드

DOI QR Code

The Gene Expression Level Differences associated with Exercise in the Mouse Brain exposed to Radiofrequency Radiation

전자파에 노출된 생쥐에서 운동량에 따른 뇌의 유전자 변화

  • Received : 2019.11.22
  • Accepted : 2020.01.20
  • Published : 2020.01.28

Abstract

The effect of radiofrequency radiation (RF) exposure on mouse associated with the exercise was investigated in the brain at the molecular level. The expression of tyrosine hydroxylase(TH), FoxO3a, AMPKα and mRNA was investigated by real-time RT-PCR in striatum and the hypothalamus. In the striatum, TH mRNA expression was decreased in the exercise and RF exposure group. FoxO3a mRNA expression was significantly increased in the spontaneous exercise group and a significant decrease was observed in the RF exposure and spontaneous exercise group. In the hypothalamus, TH mRNA expression was significantly decreased in the RF exposure and spontaneous exercise group. But, FoxO3a mRNA expression was significantly increased in the RF exposure and spontaneous exercise group. We will further investigate the expression of protein molecules in the hippocampus of the brain to reveal the effects of RF radiation on memory.

전자파 노출이 자발운동에 따른 뇌의 유전자 발현에 미치는 영향을 10 주간 4그룹 즉, 정상 그룹, 자발운동 그룹, 전자파 노출 그룹, 전자파 노출 및 자발운동 그룹으로 나누어 조사하였다. 선조체(striata)와 시상하부(hypothalamus)에서 RT-PCR을 수행하였으며, 타이로신수산화효소(TH), FoxO3a, AMPKα, mRNA 발현을 조사하였다. 선조체에서 TH mRNA 발현은 자발운동과 전자파 노출 조건에서 각각 감소하였고, 전자파 노출 및 자발운동 그룹에서 더 많이 감소되었다. 이 결과는 전자파 노출 및 자발운동 그룹에서의 운동량 감소가 선조체에서 도파민이 감소할 수 있음을 시사한다. 선조체에서 FoxO3a mRNA 발현은 자발운동 그룹에서 증가했지만, 전자파 노출 및 자발운동 그룹은 현저히 감소했다. 시상하부에서는 TH mRNA 유전자 발현은 전자파 노출을 받은 자발운동 그룹에서 감소가 유의했으며, FoxO3a mRNA는 발현의 현저한 증가가 있었다. 전자파가 기억력에 미치는 영향도 밝히기 위해 해마에서의 여러 단백질들의 발현을 추후 조사할 것이다.

Keywords

References

  1. C. O. Shin & H.-J. Kim. (2019). S. Korea clinches title as world's first country to roll out 5G phones, Maeil Business News Korea. https://pulsenews.co.kr/view.php?year=2019&no=206087.
  2. H. J. Lee, C. U. Chun & K. B. Kim. (2019). The 5G Ecosystem: How will 5G change our business landscape. Samjong insight Vol. 63. https://home.kpmg/kr/ko/home/insights/2019/02/insight63.html
  3. D. C. Shin. (2007). Health effects of Ambient Particulate Matter, J Korean Med Assoc, 50(2), 175-182. DOI:10.5124/jkma.2007.50.2.175
  4. Boscolo, P., Di Sciascio, M., D'ostilio, S., Del Signore, A., Reale, M., Conti, P., ... Di Gioacchino, M. (2001). Effects of electromagnetic fields produced by radiotelevision broadcasting stations on the immune system of women. Science of the Total Environment, 273(1-3), 1-10. DOI:10.1016/s0048-9697(01)00815-4
  5. Lee, M. S., Oh, C. S., Ryu, J. H., Lee, J., & Kim, M. J. (2018). Alterations in spontaneous movement, corticosterone, and cytokines in mice exposed to 835 MHz radiofrequency radiation. Korean Journal of Physical Anthropology, 31(1), 19-26. DOI:10.11637/kjpa.2018.31.1.19
  6. Inskip, P. D., Tarone, R. E., Hatch, E. E., Wilcosky, T. C., Shapiro, W. R., Selker, R. G., ... Linet, M. S. (2001). Cellular-telephone use and brain tumors. New England Journal of Medicine, 344(2), 79-86. DOI:10.1056/NEJM200101113440201
  7. Nie, J., Beyea, J., Bonner, M. R., Han, D., Vena, J. E., Rogerson, P., ... Edge, S. B. (2007). Exposure to traffic emissions throughout life and risk of breast cancer: The western new york exposures and breast cancer (WEB) study. Cancer Causes & Control, 18(9), 947-955. DOI:10.1007/s10552-007-9036-2 [doi]
  8. Maskey, D., & Kim, M. J. (2014). Immunohistochemical localization of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in the superior olivary complex of mice after radiofrequency exposure. Neuroscience Letters, 564, 78-82. DOI:10.1016/j.neulet.2014.02.013
  9. Zook, B. C., & Simmens, S. J. (2006). The effects of pulsed 860 MHz radiofrequency radiation on the promotion of neurogenic tumors in rats. Radiation Research, 165(5), 608-615. DOI:10.1667/RR3551.1
  10. Olsson, A., Bouaoun, L., Auvinen, A., Feychting, M., Johansen, C., Mathiesen, T., ... Villegier, A. (2019). Survival of glioma patients in relation to mobile phone use in denmark, finland and sweden. Journal of Neuro-Oncology, 141(1), 139-149. DOI:10.1007/s11060-018-03019-5
  11. H. J. Lee, J. Wu, J. Chung & J. R. Wrathall. (2013). SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells. J Neurosci Res. 91(2), 196-210. DOI:10.1002/jnr.23151
  12. Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185-215. DOI:10.1146/annurev.neuro.23.1.185
  13. Baek, D. J., Lee, C. B., & Baek, S. S. (2014). Effect of treadmill exercise on social interaction and tyrosine hydroxylase expression in the attention-deficit/hyperactivity disorder rats. Journal of Exercise Rehabilitation, 10(5), 252-257. DOI:10.12965/jer.140162
  14. O'dell, S., Gross, N., Fricks, A., Casiano, B., Nguyen, T., & Marshall, J. (2007). Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection. Neuroscience, 144(3), 1141-1151. DOI:10.1016/j.neuroscience.2006.10.042
  15. Ji, E. S., Kim, C. J., Park, J. H., & Bahn, G. H. (2014). Duration-dependence of the effect of treadmill exercise on hyperactivity in attention deficit hyperactivity disorder rats. Journal of Exercise Rehabilitation, 10(2), 75-80. DOI:10.12965/jer.140107
  16. Kim, H., Heo, H., Kim, D., Ko, I., Lee, S., Kim, S., ... Kim, J. (2011). Treadmill exercise and methylphenidate ameliorate symptoms of attention deficit/hyperactivity disorder through enhancing dopamine synthesis and brain-derived neurotrophic factor expression in spontaneous hypertensive rats. Neuroscience Letters, 504(1), 35-39. DOI:10.1016/j.neulet.2011.08.052
  17. Daitoku, H., & Fukamizu, A. (2007). FOXO transcription factors in the regulatory networks of longevity. Journal of Biochemistry, 141(6), 769-774. DOI:10.1093/jb/mvm104
  18. Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., ... Greenberg, M. E. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science (New York, N.Y.), 303(5666), 2011-2015. DOI:10.1126/science.1094637
  19. Rafalski, V. A., & Brunet, A. (2011). Energy metabolism in adult neural stem cell fate. Progress in Neurobiology, 93(2), 182-203. DOI:10.1016/j.pneurobio.2010.10.007
  20. Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1(1), 15-25. DOI:10.1016/j.cmet.2004.12.003
  21. Bayod, S., Guzman-Brambila, C., Sanchez-Roige, S., Lalanza, J. F., Kaliman, P., Ortuno-Sahagun, D., ... Pallas, M. (2015). Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain. Journal of Molecular Neuroscience, 55(2), 525-532. DOI:10.1007/s12031-014-0376-6
  22. Marosi, K., Bori, Z., Hart, N., Sarga, L., Koltai, E., Radak, Z., & Nyakas, C. (2012). Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Neuroscience, 226, 21-28. DOI:10.1016/j.neuroscience.2012.09.001 [doi]
  23. Canto, C., & Auwerx, J. (2012). Targeting sirtuin 1 to improve metabolism: All you need is NAD(+)? Pharmacological Reviews, 64(1), 166-187. DOI:10.1124/pr.110.003905
  24. Salminen, A., Kaarniranta, K., & Kauppinen, A. (2013). Crosstalk between oxidative stress and SIRT1: Impact on the aging process. International Journal of Molecular Sciences, 14(2), 3834-3859. DOI:10.3390/ijms14023834
  25. Whitehead, T. D., Moros, E. G., Brownstein, B. H., & Roti Roti, J. L. (2006). The number of genes changing expression after chronic exposure to code division multiple access or frequency DMA radiofrequency radiation does not exceed the false‐positive rate. Proteomics, 6(17), 4739-4744. DOI:10.1002/pmic.200600051