References
- Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75, 685-705 https://doi.org/10.1146/annurev-physiol-030212-183653
- Rodier F and Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192, 547-556 https://doi.org/10.1083/jcb.201009094
- Kuilman T, Michaloglou C, Mooi WJ and Peeper DS (2010) The essence of senescence. Genes Dev 24, 2463-2479 https://doi.org/10.1101/gad.1971610
- Liou GY and Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44, 479-496 https://doi.org/10.3109/10715761003667554
-
Kang JY, Kim JJ, Jang SY and Bae YS (2009) The
$p53-p21^{Cip1/WAF1}$ pathway is necessary for cellular senescence induced by the inhibition of protein kinase CKII in human colon cancer cells. Mol Cells 28, 489-494 https://doi.org/10.1007/s10059-009-0141-9 - Jeon SM, Lee SJ, Kwon TK et al (2010) NADPH oxidase is involved in protein kinase CKII down-regulation-mediated senescence through elevation of the level of reactive oxygen species in human colon cancer cells. FEBS Lett 584, 3137-3142 https://doi.org/10.1016/j.febslet.2010.05.054
- Park JH, Kim JJ and Bae YS (2013) Involvement of PI3K-AKT-mTOR pathway in protein kinase CKII inhibition-mediated senescence in human colon cancer cells. Biochem Biophys Res Commun 433, 420-425 https://doi.org/10.1016/j.bbrc.2013.02.108
- Park SY and Bae YS (2016) Inactivation of the FoxO3a transcription factor is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated senescence in human colon cancer and breast cancer cells. Biochem Biophys Res Commun 478, 18-24 https://doi.org/10.1016/j.bbrc.2016.07.106
- Park JH, Lee JH, Park JW et al (2017) Downregulation of protein kinase CK2 activity induces age-related biomarkers in C. elegans. Oncotarget 8, 36950-36963 https://doi.org/10.18632/oncotarget.16939
- Storz P (2011) Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid Redox Signal 14, 593-605 https://doi.org/10.1089/ars.2010.3405
- Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868 https://doi.org/10.1016/S0092-8674(00)80595-4
- Senf SM, Sandesara PB, Reed SA and Judge AR (2011) p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Am J Physiol Cell Physiol 300, 1490-1501 https://doi.org/10.1152/ajpcell.00255.2010
- Motta MC, Divecha N, Lemieux M et al (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563 https://doi.org/10.1016/S0092-8674(04)00126-6
- Ferguson D, Shao N, Heller E et al (2015) SIRT1-FOXO3a regulate cocaine actions in the nucleus accumbens. J Neurosci 35, 3100-3111 https://doi.org/10.1523/JNEUROSCI.4012-14.2015
- Vaziri H, Dessain SK, Ng Eaton E et al (2001) hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159 https://doi.org/10.1016/S0092-8674(01)00527-X
- van der Veer E, Ho C, O'Neil C et al (2007) Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem 282, 10841-1085 https://doi.org/10.1074/jbc.C700018200
- Kang H, Jung JW, Kim MK and Chung JH (2009) CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS One 4, e6611 https://doi.org/10.1371/journal.pone.0006611
- Jang SY, Kim SY and Bae YS (2011) p53 deacetylation by SIRT1 decreases during protein kinase CK2 downregulationmediated cellular senescence. FEBS Lett 585, 3360-3366 https://doi.org/10.1016/j.febslet.2011.09.027
- Wood JG, Rogina B, Lavu S et al (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689 https://doi.org/10.1038/nature02789
- Viswanathan M, Kim SK, Berdichevsky A and Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9, 605-615 https://doi.org/10.1016/j.devcel.2005.09.017
- Murphy CT, McCarroll SA, Bargmann CI et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277-283 https://doi.org/10.1038/nature01789
- Ogg S, Paradis S, Gottlieb S et al (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994-999 https://doi.org/10.1038/40194
- Ryu SW, Woo JH, Kim YH et al (2006) Downregulation of protein kinase CKII is associated with cellular senescence. FEBS Lett 580, 988-994 https://doi.org/10.1016/j.febslet.2006.01.028
- Lee YH, Yuk HJ, Park KH and Bae YS (2013) Coumestrol induces senescence through protein kinase CKII inhibition-mediated reactive oxygen species production in human breast cancer and colon cancer cells. Food Chem 141, 381-388 https://doi.org/10.1016/j.foodchem.2013.03.053
- Hwang JS, Ham SA, Yoo T et al (2016) Upregulation of MKP-7 in response to rosiglitazone treatment ameliorates lipopolysaccharide-induced destabilization of SIRT1 by inactivating JNK. Pharmacol Res 114, 47-55 https://doi.org/10.1016/j.phrs.2016.10.014
- Cheng J, Liu C, Liu L et al (2016) MEK1 signaling promotes self-renewal and tumorigenicity of liver cancer stem cells via maintaining SIRT1 protein stabilization. Oncotarget 7, 20597-20611. https://doi.org/10.18632/oncotarget.7972
- Peng L, Yuan Z, Li Y et al (2015) Ubiquitinated sirtuin 1 (SIRT1) function is modulated during DNA damageinduced cell death and survival. J Biol Chem 290, 8904-8912 https://doi.org/10.1074/jbc.M114.612796
- Allende-Vega N, Dias S, Milne D and Meek D (2005) Phosphorylation of the acidic domain of Mdm2 by protein kinase CK2. Mol Cell Biochem 274, 85-90 https://doi.org/10.1007/s11010-005-3074-4
-
Lee A, Rayner SL, De Luca A et al (2017) Casein kinase II phosphorylation of cyclin F at serine 621 regulates the Lys48-ubiquitylation E3 ligase activity of the
$SCF^{(cyclin F)}$ complex. Open Biol 7, 170058 https://doi.org/10.1098/rsob.170058 - Lee SJ, Hwang AB and Kenyon C (2010) Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20, 2131-2136 https://doi.org/10.1016/j.cub.2010.10.057