References
- Duffy VB, Backstrand JR and Ferris AM (1995) Olfactory dysfunction and related nutritional risk in free-living, elderly women. J Acad Nutr Diet 95, 879-884
- Ruan Y, Zheng XY, Zhang HL, Zhu W and Zhu J (2012) Olfactory dysfunctions in neurodegenerative disorders. J Neurosci Res 90, 1693-1700 https://doi.org/10.1002/jnr.23054
- Doty RL, Stern MB, Pfeiffer C, Gollomp SM and Hurtig HI (1992) Bilateral olfactory dysfunction in early stage treated and untreated idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 55, 138-142 https://doi.org/10.1136/jnnp.55.2.138
- Albers MW, Tabert MH and Devanand D (2006) Olfactory dysfunction as a predictor of neurodegenerative disease. Curr Neurol Neurosci Rep 6, 379-386 https://doi.org/10.1007/s11910-996-0018-7
- Castellano JM, Kirby ED and Wyss-Coray T (2015) Blood-borne revitalization of the aged brain. JAMA Neurol 72, 1191-1194 https://doi.org/10.1001/jamaneurol.2015.1616
- Katsimpardi L, Litterman NK, Schein PA et al (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630-634 https://doi.org/10.1126/science.1251141
- Villeda SA, Luo J, Mosher KI et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90-94 https://doi.org/10.1038/nature10357
- Ruckh JM, Zhao J-W, Shadrach JL et al (2012) Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10, 96-103 https://doi.org/10.1016/j.stem.2011.11.019
- Robbins PD (2017) Extracellular vesicles and aging. Stem Cell Investig 4, 98 https://doi.org/10.21037/sci.2017.12.03
- Chinta SJ, Woods G, Rane A, Demaria M, Campisi J and Andersen JK (2015) Cellular senescence and the aging brain. Exp Gerontol 68, 3-7 https://doi.org/10.1016/j.exger.2014.09.018
- Lopez-Otin C, Blasco MA, Partridge L, Serrano M and Kroemer G (2013) The hallmarks of aging. Cell 153, 1194-1217 https://doi.org/10.1016/j.cell.2013.05.039
- Flach RJ and Bennett AM (2010) MAP kinase phosphatase-1--a new player at the nexus between sarcopenia and metabolic disease. Aging (Albany NY) 2, 170-176 https://doi.org/10.18632/aging.100135
- Collado M, Blasco MA and Serrano M (2007) Cellular senescence in cancer and aging. Cell 130, 223-233 https://doi.org/10.1016/j.cell.2007.07.003
- Young AR and Narita M (2009) SASP reflects senescence. EMBO Rep 10, 228-230 https://doi.org/10.1038/embor.2009.22
- Castellano JM, Mosher KI, Abbey RJ et al (2017) Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488 https://doi.org/10.1038/nature22067
- Kovacs T (2004) Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res Rev 3, 215-232 https://doi.org/10.1016/j.arr.2003.10.003
- Seo Y, Kim H-S, Shin Y et al (2014) Excessive microglial activation aggravates olfactory dysfunction by impeding the survival of newborn neurons in the olfactory bulb of Niemann-Pick disease type C1 mice. Biochim Biophys Acta Mol Basis Dis 1842, 2193-2203 https://doi.org/10.1016/j.bbadis.2014.08.005
- Seo Y, Kim HS, Kang I et al (2016) Cathepsin S contributes to microglia-mediated olfactory dysfunction through the regulation of Cx3cl1-Cx3cr1 axis in a Niemann-Pick disease type C1 model. Glia 64, 2291-2305 https://doi.org/10.1002/glia.23077
- Clausen BH, Degn M, Martin NA et al (2014) Systemically administered anti-TNF therapy ameliorates functional outcomes after focal cerebral ischemia. J Neuroinflammation 11, 203 https://doi.org/10.1186/s12974-014-0203-6
- Hennessy E, Gormley S, Lopez-Rodriguez AB, Murray C, Murray C and Cunningham C (2017) Systemic TNF-alpha produces acute cognitive dysfunction and exaggerated sickness behavior when superimposed upon progressive neurodegeneration. Brain Behav Immun 59, 233-244 https://doi.org/10.1016/j.bbi.2016.09.011
- Freund A, Patil CK and Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30, 1536-1548 https://doi.org/10.1038/emboj.2011.69
- Eljaschewitsch E, Witting A, Mawrin C et al (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49, 67-79 https://doi.org/10.1016/j.neuron.2005.11.027
- Chi H, Barry SP, Roth RJ et al (2006) Dynamic regulation of pro-and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci U S A 103, 2274-2279 https://doi.org/10.1073/pnas.0510965103
- Zhang Y, Reynolds JM, Chang SH et al (2009) MKP-1 is necessary for T cell activation and function. J Biol Chem 284, 30815-30824 https://doi.org/10.1074/jbc.M109.052472
- Hajek A, Brettschneider C, Luhmann D et al (2016) Effect of Visual Impairment on Physical and Cognitive Function in Old Age: Findings of a Population-Based Prospective Cohort Study in Germany. J Am Geriatr Soc 64, 2311-2316 https://doi.org/10.1111/jgs.14458
- Nissant A and Pallotto M (2011) Integration and maturation of newborn neurons in the adult olfactory bulb-from synapses to function. Eur J Neurosci 33, 1069-1077 https://doi.org/10.1111/j.1460-9568.2011.07605.x
- Bachstetter AD, Pabon MM, Cole MJ et al (2008) Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neurosci 9, 22 https://doi.org/10.1186/1471-2202-9-22
- Streit WJ, Sammons NW, Kuhns AJ and Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45, 208-212 https://doi.org/10.1002/glia.10319
- Letiembre M, Hao W, Liu Y et al (2007) Innate immune receptor expression in normal brain aging. Neurosci 146, 248-254 https://doi.org/10.1016/j.neuroscience.2007.01.004
- Nissen JC (2017) Microglial function across the spectrum of age and gender. Int J Mol Sci 18, 561 https://doi.org/10.3390/ijms18030561
- Kirschke H (2013) Cathepsin S; in Handbook of Proteolytic Enzymes (Third Edition). Elsevier 1824-1830
- Wendt W, Lubbert H and Stichel CC (2008) Upregulation of cathepsin S in the aging and pathological nervous system of mice. Brain Res 1232, 7-20 https://doi.org/10.1016/j.brainres.2008.07.067
- Nakanishi H (2003) Microglial functions and proteases. Mol Neurol 27, 163-176
- Veiga-Fernandes H and Artis D (2018) Neuronal-immune system cross-talk in homeostasis. Science 359, 1465-1466 https://doi.org/10.1126/science.aap9598
- Maier SF (2003) Bi-directional immune-brain communication: Implications for understanding stress, pain, and cognition. Brain Behav Immun 17, 69-85 https://doi.org/10.1016/S0889-1591(03)00032-1
- Biesmans S, Bouwknecht JA, Ver Donck L et al (2015) Peripheral Administration of Tumor Necrosis Factor-Alpha Induces Neuroinflammation and Sickness but Not Depressive-Like Behavior in Mice. Biomed Res Int 2015, 716920
- Raynor J, Lages CS, Shehata H, Hildeman DA and Chougnet CA (2012) Homeostasis and function of regulatory T cells in aging. Curr Opin Immunol 24, 482-487 https://doi.org/10.1016/j.coi.2012.04.005
- Dagdeviren S, Jung DY, Friedline RH et al (2017) IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. FASEB J 31, 701-710 https://doi.org/10.1096/fj.201600832R
- Spencer NF, Norton SD, Harrison LL, Li GZ and Daynes RA (1996) Dysregulation of IL-10 production with aging: possible linkage to the age-associated decline in DHEA and its sulfated derivative. Exp Gerontol 31, 393-408 https://doi.org/10.1016/0531-5565(95)02033-0
- Schmitt V, Rink L and Uciechowski P (2013) The Th17/Treg balance is disturbed during aging. Exp Gerontol 48, 1379-1386 https://doi.org/10.1016/j.exger.2013.09.003