• Title/Summary/Keyword: Fourier transform-ion cyclotron resonance (FT-ICR) MASS

Search Result 18, Processing Time 0.019 seconds

Fourier Transform Ion Cyclotron Resonance (FT-ICR) MASS Spectrophotometric Analysis of Flower Petal from Paeonia lactiflora cv. ‘Red Charm’ and Evaluation of its Functional Activity (작약 레드참 꽃잎의 이온화원-푸리에 변환 질량분석과 기능성 연구)

  • Kim, June Hyun;Choi, Yong Bock;Lee, Ha Jung;Kim, Yong Hee;Kim, Jun Huan;Sim, Jung Min;Sohn, Young-Sun
    • Korean Journal of Plant Resources
    • /
    • v.29 no.5
    • /
    • pp.588-597
    • /
    • 2016
  • Little attention has been paid to the functional aspect of the flower petal of Paeonia lactiflora, compared to that of its root. To determine the components of flower petal of Paeonia lactiflora, we conducted the Fourier transform ion cyclotron resonance (FT-ICR) MASS spectrophotometric analysis. We detected the 24 different types of ingredients from the 70% ethanol extracts of flower petal of peonia lactiflora cv. ‘Red Charm’. The main compounds were quercetin glucopyranosides, methyl gallate, paonioflolol and kaemperol glucopyranosides. We further tested its functional activity. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the extracts was 87.9-90.4% at 0.1mg/ml. This result showed that these flower extracts have approximately 5-fold stronger antioxidant potential than a previous report with root extracts (Bang et al. 1999). The result of tyrosinase inhibition assay of Paeonia lactflora extract was almost similar to that of arbutin except significantly higher effect in the coral sunset extract at 0.1% concentration. Hyaluronidase inhibition assay showed 76.5% inhibition at 5% concentration of this flower extract, indicating that Peaonia lactiflora flower extracts have the major anti-inflammatory, anti-oxidant and brightening effects. Taken together, these results suggest these three Paeonia lactiflora species extracts might provide the basis to develop a new natural brightening agent.

Characterization of Basic Nitrogen-Containing Compounds in the Products of Lube Base Oil Processing by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

  • Li, Xiaohui;Zhu, Jianhua;Wu, Bencheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.165-172
    • /
    • 2014
  • The distribution of basic nitrogen-containing compounds in three vacuum gas oils (VGOs) with different boiling ranges and their dewaxed oils from the lube base oil refining unit of a refinery were characterized by positive-ion electrospray ionization (ESI) Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). It turned out that the composition of basic nitrogen compounds in the samples varied significantly in DBE and carbon number, and the dominant basic N-containing compounds in these oil samples were N1 class species. $N_1O_1$, $N_1O_2$, and $N_2$ class species with much lower relative abundance were also identified. The composition of basic nitrogen compounds in VGOs and dewaxed VGOs were correlated with increased boiling point and varied in DBE and carbon numbers. The comparison of the analytical results between VGOs and dewaxed VGOs indicated that more basic N-containing compounds in VGO with low carbon number and small molecular weight tend to be removed by solvent refining in lube base oil processing.

Characterization of Molecular Composition of Bacterial Melanin Isolated from Streptomyces glaucescens Using Ultra-High-Resolution FT-ICR Mass Spectrometry

  • Choi, Mira;Choi, A Young;Ahn, Soo-Yeon;Choi, Kwon-Young;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.81-85
    • /
    • 2018
  • In this study, the chemical composition of bacterial melanin isolated from the Streptomyces glaucescens strain was elucidated by ultra-high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Ultra-high-resolution mass profiles of the microbial melanin product were acquired using a 15 Tesla FT-ICR mass spectrometer in positive and negative ion modes via electrospray ionization to obtain more complete descriptions of the molecular compositions of melanin-derived organic constituents. A mass resolving power of 500,000 (at m/z 400) was achieved for all spectra while collecting 400 scans per sample with a 4 M transient. The results of this analysis revealed that the melanin pigment isolated from S. glaucescens predominantly exhibits CHON and CHO species, which belong to the proteins class of compounds, with the mean C/O and C/N ratios of 4.3 and 13.1, thus suggesting that the melanin could be eumelanin. This analytical approach could be utilized to investigate the molecular compositions of a variety of natural or synthetic melanins. The compositional features of melanins are important for understanding their formation mechanisms and physico-chemical properties.

Application of Comprehensive 2D GC-MS and APPI FT-ICR MS for More Complete Understanding of Chemicals in Diesel Fuel

  • Cho, Yun-Ju;Islam, Annana;Ahmed, Arif;Kim, Sung-Hwan
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.43-46
    • /
    • 2012
  • In this study, comprehensive two dimension gas chromatography (2D GC-MS) and 15 T Fourier transform ion cyclotron resonance mass spectrometry (15T FT-ICR MS) connected to atmospheric pressure photo ionization (APPI) have been combined to obtain detailed chemical composition of a diesel oil sample. With 2D GC-MS, compounds with aliphatic alkyl, saturated cyclic ring(s), and one aromatic ring structures were mainly identified. Sensitivity toward aromatic compounds with more than two aromatic rings was low with 2D GC-MS. In contrast, aromatic compounds containing up to four benzene rings were identified by APPI FT-ICR MS. Relatively smaller abundance of cyclic ring compounds were found but no aliphatic alkyl compounds were observed by APPI FT-ICR MS. The data presented in this study clearly shows that 2D GC-MS and 15T FT-ICR MS provides different aspect of an oil sample and hence they have to be considered as complementary techniques to each other for more complete understanding of oil samples.

Application of Clustering Methods for Interpretation of Petroleum Spectra from Negative-Mode ESI FT-ICR MS

  • Yeo, In-Joon;Lee, Jae-Won;Kim, Sung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3151-3155
    • /
    • 2010
  • This study was performed to develop analytical methods to better understand the properties and reactivity of petroleum, which is a highly complex organic mixture, using high-resolution mass spectrometry and statistical analysis. Ten crude oil samples were analyzed using negative-mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Clustering methods, including principle component analysis (PCA), hierarchical clustering analysis (HCA), and k-means clustering, were used to comparatively interpret the spectra. All the methods were consistent and showed that oxygen and sulfur-containing heteroatom species played important roles in clustering samples or peaks. The oxygen-containing samples had higher acidity than the other samples, and the clustering results were linked to properties of the crude oils. This study demonstrated that clustering methods provide a simple and effective way to interpret complex petroleomic data.

Compositional Characterization of Petroleum Heavy Oils Generated from Vacuum Distillation and Catalytic Cracking by Positive-mode APPI FT-ICR Mass Spectrometry

  • Kim, Eun-Kyoung;No, Myoung-Han;Koh, Jae-Suk;Kim, Sung-Whan
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.41-44
    • /
    • 2011
  • Molecular compositions of two types of heavy oil were studied using positive atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Vacuum gas oil (VGO) was generated from vacuum distillation of atmospheric residual oil (AR), and slurry oil (SLO) was generated from catalytic cracking of AR. These heavy oils have similar boiling point ranges in the range of 210-$650^{\circ}C$, but they showed different mass ranges and double-bond equivalent (DBE) distributions. Using DBE and carbon number distributions, aromatic ring distributions, and the extent of alkyl side chains were estimated. In addition to the main aromatic hydrocarbon compounds, those containing sulfur, nitrogen, and oxygen heteroatoms were identified using simple sample preparation and ultra-high mass resolution FT-ICR MS analysis. VGO is primarily composed of mono- and di-aromatic hydrocarbons as well as sulfur-containing hydrocarbons, whereas SLO contained mainly polyaromatic hydrocarbons and sulfur-containing hydrocarbons. Both heavy oils contain polyaromatic nitrogen components. SLO inludes shorter aromatic alkyl side chains than VGO. This study demonstrates that APPI FT-ICR MS is useful for molecular composition characterization of petroleum heavy oils obtained from different refining processes.

Data Interpretation Methods for Petroleomics

  • Islam, Annana;Cho, Yun-Ju;Ahmed, Arif;Kim, Sung-Hwan
    • Mass Spectrometry Letters
    • /
    • v.3 no.3
    • /
    • pp.63-67
    • /
    • 2012
  • The need of heavy and unconventional crude oil as an energy source is increasing day by day, so does the importance of petroleomics: the pursuit of detailed knowledge of heavy crude oil. Crude oil needs techniques with ultra-high resolving capabilities to resolve its complex characteristics. Therefore, ultra-high resolution mass spectrometry represented by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been successfully applied to the study of heavy and unconventional crude oils. The analysis of crude oil with high resolution mass spectrometry (FT-ICR MS) has pushed analysis to the limits of instrumental and methodological capabilities. Each high-resolution mass spectrum of crude oil may routinely contain over 50,000 peaks. To visualize and effectively study the large amount of data sets is not trivial. Therefore, data processing and visualization methods such as Kendrick mass defect and van Krevelen analyses and statistical analyses have played an important role. In this regard, it will not be an overstatement to say that the success of FT-ICR MS to the study of crude oil has been critically dependent on data processing methods. Therefore, this review offers introduction to peotroleomic data interpretation methods.

Advanced Analytical Techniques for Dissolved Organic Matter and Their Applications in Natural and Engineered Water Treatment Systems (최근 용존 유기물 분석 기법 및 자연환경과 수 처리 시스템 내 활용방안)

  • Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.31-42
    • /
    • 2022
  • Dissolved organic matter (DOM), which changes according to various factors, is ubiquitously present from natural environments to engineered treatment systems. Only limited information is available regarding the environmental functions of DOM after bulk analyses are only applied for characterization. In this paper, latest DOM analytical techniques are briefly introduced, which include fluorescence excitation-emission matrix with parallel factor analysis (EEM-PARAFAC), size-exclusion chromatography with an organic carbon detector (SEC-OCD), carbon/nitrogen stable-isotope ratio, and Fourier transform-ion cyclotron resonance-mass spectroscopy (FT-ICR-MS). Recent examples of using advanced analyses to interpret the phenomena associated with DOM occurring in natural and engineered systems are presented here. Through EEM-PARAFAC, different components like protein-like, fulvic-like, and humic-like can be identified and tracked individually through the investigated systems. SEC-OCD allows researchers to quantify different size fractions. FT-ICR-MS provides thousands of molecular formulas present in bulk DOM samples. Lastly, carbon/nitrogen stable-isotope ratio offers reasonable tools for tracking the sources in environments. We also discuss the advantages and weakness of the above-mentioned characterizing tools. Specifically, they focus on single environmental factors (different sourced-DOM and interaction of sediment-pore water) or simple changes after individual treatment processes. Through collaboration with the advanced techniques later, they help the researchers to better understand environmental behaviors in aquatic systems and serve as essential tools for addressing various pending problems associated with DOM.

Ditopic Binding of Alkali Halide Ions to Trimethylboroxine

  • Jeong, Kyung-Hwan;Shin, Seung-Koo
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.9-12
    • /
    • 2010
  • Trimethylboroxine (TMB) is a six-membered ring compound containing Lewis acidic boron and Lewis basic oxygen atoms that can bind halide anion and alkali metal cation, respectively. We employed Fourier transform ion cyclotron resonance spectroscopy to study the gas-phase binding of $LiBrLi^+$ and $F^-(KF)_2$ to TMB. TMB forms association complexes with both $LiBrLi^+$ and $F^-(KF)_2$ at room temperature, providing direct evidence for the ditopic binding. Interestingly, the $TMB{\cdot}F^-(KF)_2$ anion complex is formed 33 times faster than the $TMB{\cdot}Li^+BrLi$ cation complex. To gain insight into the ditopic binding of an ion pair, we examined the structures and energetics of $TMB{\cdot}Li^+$, $TMB{\cdot}F^-$, $TMB{\cdot}LiF$ (the contact ion pair), and $Li^+{\cdot}TMB{\cdot}F^-$ (the separated ion pair) using Hartree-Fock and density functional theory. Theory suggests that $F^-$ binds more strongly to TMB than $Li^+$ and the contact ion-pair binding ($TMB{\cdot}LiF$) is more stable than the separated ion-pair binding ($Li^+{\cdot}TMB{\cdot}F^-$).

Optimized Automatic Noise Level Calculations for Broadband FT-ICR Mass Spectra of Petroleum Give More Reliable and Faster Peak Picking Results

  • Hur, Manhoi;Oh, Han-Bin;Kim, Sung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2665-2668
    • /
    • 2009
  • A new algorithm for determining noise level is proposed for more reliability in interpreting spectral data for complex Fourier transform ion cyclotron resonance (FTICR) mass spectra of petroleum. In the new algorithm, a moving window with a fixed number of data points was adopted, instead of a fixed m/z width. In the analysis of petroleum, it was found that a moving window of 50,000 or more data points was optimal. This optimized automated peak picking performed well even with frequency-dependant noise in the mass spectrum. Additionally, this fast, automated peak picking algorithm was suitable for the analysis of a large set of samples.