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A new algorithm for determining noise level is proposed for more reliability in interpreting spectral data for complex 
Fourier transform ion cyclotron resonance (FTICR) mass spectra of petroleum. In the new algorithm, a moving 
window with a fixed number of data points was adopted, instead of a fixed m/z width. In the analysis of petroleum, it 
was found that a moving window of 50,000 or more data points was optimal. This optimized automated peak picking 
performed well even with fre quency -dependant noise in the mass spectrum. Additionally, this fast, automated peak 
picking algorithm was suitable for the analysis of a large set of samples.
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Introduction

Fourier transform ion cyclotron resonance mass spectro
metry (FT-ICR MS) is widely accepted as one of the most 
powerful tools available for studying organic mixtures at the 
molecular level. The ultra-high mass resolution of FT-ICR 
MS often makes it possible to identify organic molecules based 
solely on the measured mass to charge (m/z) values. FT-ICR MS 
has been successfully applied to organic mixtures such as meta- 
bolites,1 vegetable oils,2 wine,3 explosives,4 coal extracts,5 hu
mic materials,6,7 and crude oils.8,9 Broadband FT-ICR MS spec
tra of these types of organic mixtures are usually very com
plex, with peaks appearing over a wide dynamic range.

When interpreting the mass spectra of oiganic mixtures, par
ticularly crude oils, the first step is usually peak picking. Con
ventionally, a peak picking procedure for petroleum FT-ICR MS 
spectra is based mainly on the following two steps. First, several 
m/z regions within the spectra are expanded and visually exa
mined. Second, a noise level, which is often represented by a 
signal-to-noise ratio, S/N, is manually determined, and the peak 
threshold is set based on this S/N level (the threshold is usually 
set at three to five times the S/N level). Due to the complexities 
of the spectra and a wide dynamic range of peaks appearing in 
petroleum spectra, calculation of an appropriate noise level is 
a critical step. If this calculation was performed incorrectly, a 
significant amount of noise might be included in the peak list, 
or alternately, valuable peak information might be discarded. 
Furthermore, the manual determination of a baseline can be 
done arbitrarily, which would cause inconsistent interpretation 
of spectra.

A number of computer programs have been developed to 
determine the mono-isotopic masses of peptides and proteins 
from high-resolution mass spectra.10,11-16 Currently, these pro
grams are devoted mostly to the interpretation of biomolecular 
spectra. Typically in these programs, an algorithm for auto
matic noise level determination is included.10-12 In principle, 
this algorithm could also be used to interpret petroleum spectra. 
However, the algorithm must be modified and optimized to 

account for complex differences between protein and petroleum 
spectra. A single crude oil spectrum generally contains 3,000 
to 10,000 peaks, and 15 to 30 peaks may be found in a window 
of less than 0.5 m/z in width,8,9 while peaks in protein or peptide 
spectra are relatively sparse.

In the present study, a new algorithm for automated calcula
tion of noise levels that is particularly optimal for the interpreta
tion of complex petroleum spectra will be presented, and its 
utility in understanding petroleum samples will be demonstrated.

Experiment시

To profile the changes in baseline noise over a frequency 
range of 50 kHz to 1.2 MHz, mass spectra were obtained with 
7 and 15 T FT-ICR mass spectrometers (Bruker Daltonics, Bille
rica, MA). The mass spectrometers were equipped with AQS 
data stations (Bruker Daltonics, Billerica, MA, USA). The crude 
oil samples used in this study were first diluted to 2 mg/mL in 
toluene, which was then diluted to 1 mg/mL in a 50:50 (v/v) 
toluene/methanol solution just before analysis. The analyses 
were performed with electrospray ionization (ESI). A turbo 
spray ionization source (Bruker Daltonics, Billerica, MA, USA) 
was used with a 150 卩m OD/30 pm ID capillary inserted through 
the spray tip. The sample was directly injected using a syringe 
pump (Harvard, Holliston, MA) at a flow rate of 40 - 70 卩L/h. 
For each spectrum, 2 x 106 data points were obtained.

The baseline noise from each spectrum was calculated with 
a computer code modified from the “THRASH” algorithm.10 
The program modifications are described in the following 
Results and Discussion section. The program was written in the 
C/C++ programming language and was tested using a 2.33
GHz Intel Xeon processor with 3 GB RAM.

Results and Discussion

Optimizing the noise level calculation algorithm for petro
leum data-windows with a fixed mass width versus those with 
a fixed number of data points. The noise level calculation algo
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rithm included in the THRASH10 program has been widely 
used in interpreting peptide/protein mass spectra. However, 
the direct application of the algorithm to the interpretation of 
petroleum spectra can pose a problem because of the com
plexities in these spectra, as described earlier. Therefore, it is 
necessary to modify and optimize the noise level calculation 
algorithm for the analysis of petroleum mass spectra.

In the original THRASH algorithm,10,11 a noise level is cal
culated based on the assumption that the baseline noise should 
contain the highest data point density.

Based on this assumption, the number of data points ob
served in the mass spectrum that are equal to or less than a 
specific intensity value is plotted against that same intensity 
value. The specific intensity value where the second derivative 
of the graph becomes zero is determined to be the baseline 
noise. Since the noise level determination is related closely to 
the number of data points, the total number of points in any 
defined window can be an important variable in the noise level 
determination. However, in the original THRASH algorithm, 
a mass spectrum was divided simply into equally spaced mass- 
to-charge windows, with windows in different m/z regions 
having different numbers of data points.10 For example, a win
dow of 1 m/z width at 300 m/z in a 15 T FT-ICR spectra obtained 
at a sampling rate of 〜1.5 MHz has about 7,000 data points, 
whereas the same 1 m/z window at 900 m/z has less than 1,000 
data points. This means that the noise level at 300 m/z is deter
mined using a much larger number of data points than that at 
900 m/z. Since the number of data points included in the defined 
window is an important variable for the signal-to-noise level 
determination algorithm, noise level calculations may not be 
consistent, particularly when a very complex mass spectrum 
is involved.

To eliminate the drawbacks described above, windows with 
equal numbers of data points should be used for noise level 
calculations. Note that a window with the same number of data 
points also means an equally spaced frequency window in FT- 
ICR MS spectra. In the present study, in order to make a com
parison, peak finding was carried out using both approaches, 
i.e, equally spaced m/z and frequency windows, for the same 
mass spectrum presented in Figure 1a, and two peak lists were 
obtained (refer to Supplementary data). The peak list obtained 
with a 1 m/z width equally spaced window included about 50 
peaks identified in the region of 900 〜1,000 m/z, whereas the 
peak picking with a window of a constant number of data points 
(5,000 data points in this case) resulted in eight peaks over the 
same mass region. Manual inspection of the same mass region 
showed that there were only a few peaks existing at three times 
the noise level threshold (refer to Figure 1b). Most of the 50 
peaks identified by the equally spaced m/z window were found 
to be noise.

To further examine the effect of a window with a constant 
number of data points in the peak picking algorithm, the same 
approach was also applied to the 300 〜400 m/z region. How
ever, in this case, both methods identified an almost identical 
number of peaks, e.g, 613 peaks by the equally spaced m/z 
window method, and 611 peaks using the fixed data point win
dow. This discrepancy in the pick-finding results appears to 
arise from the fact that the data point density in a low m/z region

Figure 1. (a) A broadband spectrum of crude oil, and (b) the expanded 
region where no significant peaks exist.

is much higher than that in a high m/z region. Therefore, the in
fluence of a window with a constant number of data points on 
the determination of a noise level is minimized in a low m/z 
region. In summary, in this study, it was found that noise level 
calculation and the associated peak-finding is more reliable in 
a fixed number of data points mode than in a fixed m/z window 
mode.

Optima number of data points for the noise level determina
tion. When the analysis is carried out in a fixed number of data 
points mode, i.e., in a fixed frequency window mode, an entire 
spectrum is divided into many smaller windows. As stated in 
the previous section, the number of data points per window is 
an important parameter. Therefore, optimizing the number of 
data points for the window was attempted, in order to reliably 
interpret complex petroleum mass spectra.

To examine the effect of window size on noise level calcu
lations, noise levels were determined with different numbers 
of data points, for the petroleum spectrum in Figure 1, and the 
results are given in Figure 2. In Figure 2, the noise levels were 
determined using (a) 25,000, (b) 50,000, (c) 100,000, and (d) 
150,000 data points, respectively. With a 25,000 data point 
window, noise levels were observed to fluctuate 15% or more 
between adjacent windows (e.g., the circled area in Fig. 2a). 
However, manual inspection of the original spectra did not 
exhibit such a large fluctuation. The noise level calculation 
with 50,000 or more data points resulted in much less noise 
level fluctuation (refer to Figures 2b and c). The observed 
fluctuation in Figure 2a likely came from the limited number 
of data points for the window. Windows containing 50,000 or 
more data points appear to be suitable for the analysis of petro
leum data obtained in the FT-ICR mass spectrometer. On the 
other hand, calculating a noise level over a rather broad fre
quency range, i.e., with too many data points, such as the 
150,000 data points in Figure 2(d), may risk overlooking local 
frequency-dependent noise. A more detailed description of 
the local frequency-dependent noise will be given in the follow
ing section. Based on the observations described above, the 
window of 50,000 data points appeared to be optimal and was 
used for further noise level calculations that will be described 
in the following section.

Validation of the improved automated noise level determi
nation method. Conventional data analysis programs other 
than THRASH calculate noise levels from the entire mass (or 
frequency) range of the spectrum and use this single noise



Optimized Automatic Noise Lev이 Calculations for FT-ICR MS Data Bull. Korean Chem. Soc. 2009, Vol. 30, No. 11 2667

(a) 25 k points window

①
은
흉
 u

n
q ro으w

-

①
M

600000

500000

400000

300000

200000

100000

Frequency (Hz)

(b) 50 k points window

0 100000 200000 300000 400000

(c) 100 k points window
600000

①
은
흉
 u

n
q ro으w

-

①
M

500000

400000

300000

200000

100000

0
0 100000 200000 300000 400000 500000

(d) 150 k points window

Frequency (Hz)Frequency (Hz)

Figure 2. Profiled noise levels calculated with (a) 25 k, (b) 50 k, (c) 100 k, and (d) 150 k point windows.
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Figure 3. Displays of (a) a broadband spectrum of petroleum with frequency-dependent noise, (b) profiled noise level of the spectrum, and (c) 
& (d) expanded regions.

threshold for peak selections. However, this approach can lead 
to significant errors, since noise levels in mass spectra can vary 
significantly from one mass spectral region to another. This is 
exemplified in Figure 3, which shows a broadband mass spec

trum of petroleum obtained with a 15 T FT-ICR MS, in which the 
profiled noise level of the spectrum is given in arbitrary units 
(see Figure 3(b)). In Figure 3(b), the noise level in the circled 
region 2 is almost two times larger than that in the circled area
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Table 1. Numbers of peaks found by conventional and automated peak picking

# of peaks found # of unassigned peaks

Conventional peak picking, with a relative abundance threshold at 0.5% 
of the base peak 3086 597

Automated peak picking, with a S/N ratio cutoff of 4.5 2937 181

1. From these two specific cases of expanded spectra, taken 
from circled areas 1 and 2 (Figures 3(c) and (d)), it is clear that 
peak selections based on a fixed noise threshold over an entire 
mass could lead to missed valid peaks or mistakenly included 
noise peaks.

To make a direct comparison between the conventional and 
our improved data analysis algorithms, peak picking was per
formed for the petroleum mass spectrum of Figure 3(a) using 
both methods; note that the conventional method involves the 
determination of a single noise level over an entire mass spec
trum. The total numbers of peaks found by each method were 
tabulated in Table 1. After peak picking, elemental formulae 
were calculated and assigned, based on the m/z values. Normal 
conditions for petroleum data (CcHhNnOo Ss, c unlimited, h un
limited, 0 < n < 5, 0 o < 10, 0 < s < 2)17 were used for the veri
fication. The number of peaks that could not be assigned with 
elemental formulae were also tabulated (Table 1). Despite the 
fact that similar numbers of peaks (〜3,000 peaks) were found 
by both methods, the number of unassigned peaks was about 
three times larger when the conventional peak finding algorithm 
was used. This large difference in the number of unassigned 
peaks may be attributed to misassignment of noise as real peaks 
in the conventional approach. This demonstrated that the im
proved automated method performed better than the conven
tional one.

Furthermore, the automated peak picking was faster and 
more convenient than the manual inspection method, parti
cularly when multiple spectra had to be processed. The manual 
peak picking includes expanding several spectral regions in a 
spectrum, examining each expanded region, and then deter
mining the noise level. These processes have to be repeated for 
each individual spectrum, since each spectrum can have diff
erent noise level. However, with the automated peak picking, 
a user can avoid such tedious procedures, which ensures reliable 
analyses of complex FT-ICR mass spectra of petroleum in less 
time.

Conclusions

A new, automated peak picking algorithm with a moving 
frequency window was proposed and optimized for high- 
resolution FT-ICR mass spectra of petroleum. A constant num
ber of data points (or frequencies) window with at least 50,000 
data points was found to be optimal for petroleum data analysis. 
The new algorithm operates well even in the presence of fre
quency-dependent noise. Compared with the manual analysis, 

the automated program gives more consistent data analysis 
results. With the improved reliability in peak-peaking, more 
efficient data analysis is possible, even for a large number of 
data sets. We expect that this new algorithm for mass spectral 
analysis can also be applied to the semi-quantitative or quan
titative interpretation of mass spectra of other organic species.
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