DOI QR코드

DOI QR Code

Application of Comprehensive 2D GC-MS and APPI FT-ICR MS for More Complete Understanding of Chemicals in Diesel Fuel

  • Cho, Yun-Ju (Kyungpook National University, Department of Chemistry) ;
  • Islam, Annana (Kyungpook National University, Department of Chemistry) ;
  • Ahmed, Arif (Kyungpook National University, Department of Chemistry) ;
  • Kim, Sung-Hwan (Kyungpook National University, Department of Chemistry)
  • Received : 2012.06.08
  • Accepted : 2012.06.17
  • Published : 2012.06.28

Abstract

In this study, comprehensive two dimension gas chromatography (2D GC-MS) and 15 T Fourier transform ion cyclotron resonance mass spectrometry (15T FT-ICR MS) connected to atmospheric pressure photo ionization (APPI) have been combined to obtain detailed chemical composition of a diesel oil sample. With 2D GC-MS, compounds with aliphatic alkyl, saturated cyclic ring(s), and one aromatic ring structures were mainly identified. Sensitivity toward aromatic compounds with more than two aromatic rings was low with 2D GC-MS. In contrast, aromatic compounds containing up to four benzene rings were identified by APPI FT-ICR MS. Relatively smaller abundance of cyclic ring compounds were found but no aliphatic alkyl compounds were observed by APPI FT-ICR MS. The data presented in this study clearly shows that 2D GC-MS and 15T FT-ICR MS provides different aspect of an oil sample and hence they have to be considered as complementary techniques to each other for more complete understanding of oil samples.

Keywords

References

  1. Silva, S. L.; Silva, A. M. S.; Ribeiro, J. C.; Martins, F. G.; Da Silva, F. A.; Silva, C. M. Anal. Chimi. Acta. 2011, 707, 18. https://doi.org/10.1016/j.aca.2011.09.010
  2. Ai-Thamir, W. K. Fuel 1988, 67, 871. https://doi.org/10.1016/0016-2361(88)90166-4
  3. Müller, A. L. H.; Picoloto, R. S.; Mello, P. d. A.; Ferrão, M. F.; dos Santos, M. d. F. P.; Guimaraes, R. C. L.; Müller, E. I.; Flores, E. M. M. Spectro. Acta Part A: Mol. and Biomol. Spectro. 2012, 89, 82. https://doi.org/10.1016/j.saa.2011.12.001
  4. Genov, G.; Nodland, E.; Skaare, B. B.; Barth, T. Org. Geochem. 2008, 39, 1229. https://doi.org/10.1016/j.orggeochem.2008.04.006
  5. Li, M.; Xu, M.; Ma, Y.; Wu, Z.; A. Christy, A. Coll. and Surf. A: Phys. and Eng. Asp. 2002, 197, 193. https://doi.org/10.1016/S0927-7757(01)00892-5
  6. Wang, Z. D.; Stout, S. A.; Fingas, M. Env. Foren. 2006, 7, 105. https://doi.org/10.1080/15275920600667104
  7. Marriott, P. J.; Shellie, R.; Cornwell, C. J. Chromatogr. A 2001, 936, 1. https://doi.org/10.1016/S0021-9673(01)01314-0
  8. Tabanca, N.; Demirci, B.; Kirimer, N.; Baser, K. H. C.; Bedir, E.; Khan, I. A.; Wedge, D. E. J. Chromatogr. A 2005, 1097, 192. https://doi.org/10.1016/j.chroma.2005.10.047
  9. Dalluge, J.; Beens, J.; Brinkman, U. A. T. J. Chromatogr. A 2003, 1000, 69. https://doi.org/10.1016/S0021-9673(03)00242-5
  10. Marriott, P.; Shellie, R. TrAC Trends Anal. Chem. 2002, 21, 573. https://doi.org/10.1016/S0165-9936(02)00814-2
  11. Marshall, A. G. Acc. Chem. Res. 1985, 18, 316. https://doi.org/10.1021/ar00118a006
  12. Maikhunthod, B.; Morrison, P. D.; Small, D. M.; Marriott, P. J. J. Chromatogr. A 2010, 1217, 1522. https://doi.org/10.1016/j.chroma.2009.12.078
  13. Dutriez, T.; Courtiade, M.; Thiebaut, D.; Dulot, H.; Hennion, M. C. Fuel 2010, 89, 2338. https://doi.org/10.1016/j.fuel.2009.11.041
  14. Flego, C.; Zannoni, C. Fuel 2011, 90, 2863. https://doi.org/10.1016/j.fuel.2011.04.040
  15. Marsman, J. H.; Wildschut, J.; Mahfud, F.; Heeres, H. J. J. Chromatogr. A 2007, 1150, 21. https://doi.org/10.1016/j.chroma.2006.11.047
  16. Nizio, K. D.; McGinitie, T. M.; Harynuk, J. J. J. Chromatogr. A. in press.
  17. Kim, E. K.; No, M. H.; Koh, J. S.; Kim, S. Mass Spectrom. Lett. 2011, 2, 41. https://doi.org/10.5478/MSL.2011.2.2.041
  18. Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Mass Spec. Rev. 1998, 17, 1. https://doi.org/10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K
  19. Rodgers R. P.; H. C. A., Hendrickson C. L.; Marshall A. G. Fuel Chem. Div. Prep. 2002, 47, 636.
  20. Wang, J.; Zhang, X.; Li, G. Chemosphere 2011, 85, 609. https://doi.org/10.1016/j.chemosphere.2011.06.103
  21. Hughey, C. A.; Rodgers, R. P.; Marshall, A. G.; Qian, K.; Robbins, W. K. Org. Geochem. 2002, 33, 743. https://doi.org/10.1016/S0146-6380(02)00038-4
  22. Helms, J. R.; Kong, X.; Salmon, E.; Hatcher, P. G.; Schmidt-Rohr, K.; Mao, J. Org. Geochem. 2012, 44, 21. https://doi.org/10.1016/j.orggeochem.2011.12.001
  23. Miyabayashi, K.; Naito, Y.; Yamada, M.; Miyake, M.; Ushio, M.; Fuchigami, J.; Kuroda, R.; Ida, T.; Hayashida, K.; Ishihara, H. Fuel Pro.Tech. 2008, 89, 397. https://doi.org/10.1016/j.fuproc.2007.11.009
  24. Hur, M.; Shin, S.; Seo, H.; Yeo, I.; Park, E. S.; Kim, E.;No, M. H.; Kim, Y. H.; Kim, S. 2009. Interpretation of Crude Oil High Resolution Spectra obtained by ESI and APPI FT-ICR Mass Spectrometry using Principal Components Analysis In 57th ASMS Conference on Mass Spectrometry and Allied Topics. Philadelphia.
  25. Hur, M.; Oh, H. B.; Kim, S. Bull. Korean Chem. Soc. 2009, 30, 2665. https://doi.org/10.5012/bkcs.2009.30.11.2665
  26. Reichenbach, S. E.; Ni, M.; Kottapalli, V.; Visvanathan, A. Chemo. and Intell. Lab. Sys. 2004, 71, 107. https://doi.org/10.1016/j.chemolab.2003.12.009
  27. Murphy, R. E.; Schure, M. R.; Foley, J. P. Anal. Chem. 1998, 70, 1585. https://doi.org/10.1021/ac971184b
  28. Reichenbach, S. E.; Ni, M.; Zhang, D.; Ledford Jr, E. B. J. Chromatogr. A 2003, 985, 47. https://doi.org/10.1016/S0021-9673(02)01498-X
  29. Kallio, M.; Hyötyläinen, T. J. Chromatogr. A 2007, 1148, 228. https://doi.org/10.1016/j.chroma.2007.03.020
  30. Vendeuvre, C.; Ruiz-Guerrero, R.; Bertoncini, F.; Duval, L.; Thiébaut, D.; Hennion, M. C. J. Chromatogr. A 2005, 1086, 21. https://doi.org/10.1016/j.chroma.2005.05.106
  31. Adam, F.; Bertoncini, F.; Coupard, V.; Charon, N.; Thiebaut, D.; Espinat, D.; Hennion, M. C. J. Chromatogr. A 2008, 1186, 236. https://doi.org/10.1016/j.chroma.2007.12.063
  32. Cookson, D. J.; Smith, B. E.; Shaw, I. M. Fuel 1987, 66, 758. https://doi.org/10.1016/0016-2361(87)90120-7
  33. Dutriez, T.; Courtiade, M.; Ponthus, J.; Thiebaut, D.; Dulot, H.; Hennion, M. C. Fuel 2012, 96, 108. https://doi.org/10.1016/j.fuel.2011.11.070
  34. Adahchour, M.; Beens, J.; Vreuls, R. J. J.; Brinkman, U. A. T. TrAC Tren. in Anal. Chem. 2006, 25, 726. https://doi.org/10.1016/j.trac.2006.03.005

Cited by

  1. Extension of the Analytical Window for Characterizing Aromatic Compounds in Oils Using a Comprehensive Suite of High-Resolution Mass Spectrometry Techniques and Double Bond Equivalence versus Carbon Number Plot vol.31, pp.8, 2017, https://doi.org/10.1021/acs.energyfuels.7b00962
  2. Optimization and Application of APCI Hydrogen–Deuterium Exchange Mass Spectrometry (HDX MS) for the Speciation of Nitrogen Compounds vol.26, pp.9, 2015, https://doi.org/10.1007/s13361-015-1166-2
  3. Correlation among Petroleomics Data Obtained with High-Resolution Mass Spectrometry and Elemental and NMR Analyses of Maltene Fractions of Atmospheric Pressure Residues vol.30, pp.9, 2016, https://doi.org/10.1021/acs.energyfuels.6b01047
  4. Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics vol.34, pp.2, 2015, https://doi.org/10.1002/mas.21438
  5. Characterization of Petroleum Heavy Oil Fractions Prepared by Preparatory Liquid Chromatography with Thin-Layer Chromatography, High-Resolution Mass Spectrometry, and Gas Chromatography with an Atomic Emission Detector vol.30, pp.4, 2016, https://doi.org/10.1021/acs.energyfuels.6b00296