• 제목/요약/키워드: Fourier transform near infrared spectroscopy

검색결과 39건 처리시간 0.025초

Thermal denaturation analysis of protein

  • Miyazawa, Mitsuhiro
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1628-1628
    • /
    • 2001
  • Near infrared (NIR) spectroscopy is a powerful technique for non-destructive analysis that can be obtained in a wide range of environments. Recently, NIR measurements have been utilized as probe for quantitative analysis in agricultural, industrial, and medical sciences. In addition, it is also possible to make practical application on NIR for molecular structural analysis. In this work, Fourier transform near infrared (FT-NIR) measurements were carried out to utilize extensively in the relative amounts of different secondary structures were employed, such as Iysozyme, concanavalin A, silk fibroin and so on. Several broad NIR bands due to the protein absorption were observed between 4000 and $5000\;^{-1}$. In order to obtain more structural information from these featureless bands, second derivative and Fourier-self-deconvolution procedures were performed. Significant band separation was observed near the feature at $4610\;^{-1}$ ,. Particularly the peak intensity at $4525\;^{-1}$ shows a characteristic change with thermal denaturation of fibroin. The structural information can be also obtained by mid-IR and CD spectral. Correlation of NIR spectra with protein structure is discussed.

  • PDF

Rapid Prediction of Amylose Content of Polished Rice by Fourier Transform Near-Infrared Spectroscopy

  • Lee, Jin-Cheol;Yoon, Yeon-Hee;Kim, Sun-Min;Pyo, Byong-Sik;Hsieh, Fu-Hung;Kim, Hak-Jin;Eun, Jong-Bang
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.477-481
    • /
    • 2007
  • Fourier transform near-infrared (FT-NIR) spectroscopy and partial least squares (PLS) regression were used to predict the amylose content of polished rice. Spectral reflectance data in a wavelength range of 1,000 to 2,500 nm were obtained with a commercial spectrophotometer for 60 different varieties of Korean rice. For a comparison of this spectroscopic method to a standard chemical analysis, the amylose contents of the tested rice samples were determined by the iodine-blue colorimetric method. The highest correlation for the rice amylose ($R^2=0.94$, standard error of prediction=0.20% amylose content) was obtained when using the FT-NIR spectrum data pre-treated with normalization, the first derivative, smoothing, and scattering correction.

근적외선분광분석기 및 에너지 분산형 X선 형광분석기를 이용한 청국장 원산지 판별 (Identification of the geographical origin of cheonggukjang by using fourier transform near-infrared spectroscopy and energy dispersive X-ray fluorescence spectrometry)

  • 강동진;문지영;이동길;이성훈
    • 한국식품과학회지
    • /
    • 제48권5호
    • /
    • pp.418-423
    • /
    • 2016
  • 근적외선분광분석기와 에너지 분산형 X선 형광분석기를 이용한 분석방법을 개발하여 각각 97.5, 98.0%의 높은 정확도의 판별식을 확립하였고, 시중 유통 시료를 분석하여 검증한 결과 각각 96.3, 95.0%의 판별 정확도를 확인하였다. 이상의 연구 결과를 통하여 근적외선분광분석기와 에너지 분산형 X선 형광분석기를 이용하여 청국장 원산지 판별이 가능함을 확인하였고 이는 유기성분 함량에 따른 근적외선 흡광도와 무기성분 함량에 따른 X선 형광에너지 강도가 국내산과 수입산 간에 차이가 있기 때문으로 사료된다.

Study on Rapid Measurement of Wood Powder Concentration of Wood-Plastic Composites using FT-NIR and FT-IR Spectroscopy Techniques

  • Cho, Byoung-kwan;Lohoumi, Santosh;Choi, Chul;Yang, Seong-min;Kang, Seog-goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권6호
    • /
    • pp.852-863
    • /
    • 2016
  • Wood-plastic composite (WPC) is a promising and sustainable material, and refers to a combination of wood and plastic along with some binding (adhesive) materials. In comparison to pure wood material, WPCs are in general have advantages of being cost effective, high durability, moisture resistance, and microbial resistance. The properties of WPCs come directly from the concentration of different components in composite; such as wood flour concentration directly affect mechanical and physical properties of WPCs. In this study, wood powder concentration in WPC was determined by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra from WPC in both powdered and tableted form with five different concentrations of wood powder were collected and preprocessed to remove noise caused by several factors. To correlate the collected spectra with wood powder concentration, multivariate calibration method of partial least squares (PLS) was applied. During validation with an independent set of samples, good correlations with reference values were demonstrated for both FT-NIR and FT-IR data sets. In addition, high coefficient of determination (${R^2}_p$) and lower standard error of prediction (SEP) was yielded for tableted WPC than powdered WPC. The combination of FT-NIR and FT-IR spectral region was also studied. The results presented here showed that the use of both zones improved the determination accuracy for powdered WPC; however, no improvement in prediction result was achieved for tableted WPCs. The results obtained suggest that these spectroscopic techniques are a useful tool for fast and nondestructive determination of wood concentration in WPCs and have potential to replace conventional methods.

Simultaneous Determination of Polycyclic Aromatic Hydrocarbons by Near Infrared Spectroscopy using a Partial Least Squares Regression

  • Nam, Jae-Jak;Lee, Sang-Hak;Park, Ju-Eun
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1276-1276
    • /
    • 2001
  • Polycyclic aromatic hydrocarbons(PAHs) are widely distributed in the environment and are often implicated as potential carcinogens. The chromatographic methods of detection and quantitative determination of PAHs in environmental samples are costly, time consuming, and do not account for all kinds of PAHs. This work describes a quantitative spectroscopic method for the analysis of mixtures of eight PAHs using multivariate calibration models for Fourier transform near infrared(FT-NIR) spectral data. The NIR spectra of mixtures of PAHs (anthracene, pyrene, 1,2-benzanthracene, perylene, chrysene, benzo(a)pyrene, 1-methylanthracene and benzo(ghi)perylene) were measured in the wavelength range from 1100 nm to 2500 nm. The spectral data were processed using a partial least squares regression. We have studied the spectral characteristics of NIR spectra of mixtures of PAHs. It was possible to determine each PAM used in this study at the environmental level(mg L-1) in the laboratory samples. Further development may lead to the rapid determination of more PAHs in typical environmental samples.

  • PDF

The application of Fourier transform near infrared (FT-NIR) spectroscopy in the wine industry of South Africa

  • Van Zyl, Anina;Manley, Marena;Wolf, Erhard E.H.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1257-1257
    • /
    • 2001
  • Fourier transform near infrared (FT-NIR) spectroscopy was used as a rapid method to measure the $^{o}Brix$ content and to discriminate between different must samples in terms of their fee amino nitrogen (FAN) values. FT-NIR spectroscopy was also used as a rapid method to discriminate between Chardonnay wine samples in terms of the status of the male-lactic fermentation (MLF). This was done by monitoring the conversion of malic to lactic acid and thereby determining whether MLF has started, is underway or has been completed followed by classification of the samples. Furthermore, FT-NIR spectroscopy was applied as a rapid method to discriminate between table wine samples in terms of the ethyl carbamate (EC) content. EC in wine can pose a health threat and need to be monitored by determining the EC content in relation to the regulatory limits set by the authorities. For each of the above mentioned parameters, $QUANT+^{TM}$ methods were built and calibrations derived and it was found that a very strong correlation existed in the sample set for the FT-NIR spectroscopic predictions of $^{o}Brix$ (r = 0.99, SECV = 0.306), but the correlations for the FAN (r = 0.61, SECV = 272.1), malic acid (r = 0.58, SECV = 1.06), lactic acid (r = 0.51, SECV = 1.14) and EC predictions (r = 0.47, SECV = 3.67) were not as good. Soft Independent Modeling by Class Analogy (SIMCA) diagnostics and validation was applied as a sophisticated discrimination method. The must samples could be classified in terms of their FAN values when SIMCA was applied, obtaining results with recognition rates exceeding 80%. When SIMCA diagnostics and validation were applied to determine the progress of conversion of malic to lactic acid and the EC content, again results with recognition rates exceeding 80% were obtained. The evaluation of the applicability of FT-NIR spectroscopy measurement of FAN, $^{o}Brix$ values, malic acid, lactic acid and EC content in must and wine shows considerable promise. FT-NIR spectroscopy has the potential to reduce the analytical times considerably in a range of measurements commonly used during the wine making process. Where conventional FT-NIR calibrations are not effective, SIMCA methods can be used as a discriminative method for rapid classification of samples. SIMCA can replace expensive, time-consuming, quantitative analytical methods, if not completely, at least to some extent, because in many processes it is only needed to know whether a specific cut off point has been reach or not or whether a sample belongs to a certain class or not.

  • PDF

Non-Destructive Sorting Techniques for Viable Pepper (Capsicum annuum L.) Seeds Using Fourier Transform Near-Infrared and Raman Spectroscopy

  • Seo, Young-Wook;Ahn, Chi Kook;Lee, Hoonsoo;Park, Eunsoo;Mo, Changyeun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제41권1호
    • /
    • pp.51-59
    • /
    • 2016
  • Purpose: This study examined the performance of two spectroscopy methods and multivariate classification methods to discriminate viable pepper seeds from their non-viable counterparts. Methods: A classification model for viable seeds was developed using partial least square discrimination analysis (PLS-DA) with Fourier transform near-infrared (FT-NIR) and Raman spectroscopic data in the range of $9080-4150cm^{-1}$ (1400-2400 nm) and $1800-970cm^{-1}$, respectively. The datasets were divided into 70% to calibration and 30% to validation. To reduce noise from the spectra and compare the classification results, preprocessing methods, such as mean, maximum, and range normalization, multivariate scattering correction, standard normal variate, and $1^{st}$ and $2^{nd}$ derivatives with the Savitzky-Golay algorithm were used. Results: The classification accuracies for calibration using FT-NIR and Raman spectroscopy were both 99% with first derivative, whereas the validation accuracies were 90.5% with both multivariate scattering correction and standard normal variate, and 96.4% with the raw data (non-preprocessed data). Conclusions: These results indicate that FT-NIR and Raman spectroscopy are valuable tools for a feasible classification and evaluation of viable pepper seeds by providing useful information based on PLS-DA and the threshold value.

Nondestructive Evaluation for the Viability of Watermelon (Citrullus lanatus) Seeds Using Fourier Transform Near Infrared Spectroscopy

  • Lohumi, Santosh;Mo, Changyeun;Kang, Jum-Soon;Hong, Soon-Jung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제38권4호
    • /
    • pp.312-317
    • /
    • 2013
  • Purpose: Conventional methods used to evaluate seeds viability are destructive, time consuming, and require the use of chemicals, which are not feasible to implement to process plant in seed industry. In this study, the effectiveness of Fourier transform near infrared (FT-NIR) spectroscopy to differentiate between viable and nonviable watermelon seeds was investigated. Methods: FT-NIR reflectance spectra of both viable and non-viable (aging) seeds were collected in the range of 4,000 - 10,000 $cm^{-1}$ (1,000 - 2,500 nm). To differentiate between viable and non-viable seeds, a multivariate classification model was developed with partial least square discrimination analysis (PLS-DA). Results: The calibration and validation set derived from the PLS-DA model classified viable and non-viable seeds with 100% accuracy. The beta coefficient of PLS-DA, which represented spectral difference between viable and non-viable seeds, showed that change in the chemical component of the seed membrane (such as lipids and proteins) might be responsible for the germination ability of the seeds. Conclusions: The results demonstrate the possibility of using FT-NIR spectroscopy to separate seeds based on viability, which could be used in the development of an online sorting technique.

Structural Characterization and Dielectric Studies of Superparamagnetic Iron Oxide Nanoparticles

  • Sivakumar, D.;Naidu, K. Chandra Babu;Nazeer, K. Prem;Rafi, M. Mohamed;kumar, G. Ramesh;Sathyaseelan, B.;Killivalavan, G.;Begam, A. Ayisha
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.230-238
    • /
    • 2018
  • Superparamagnetic iron oxide nanoparticles (SPIONs) have been prepared without using surfactants to assess their stability at different time intervals. The synthesized particles were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible-near infrared spectroscopy, and energy dispersive spectroscopy. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images of the samples were also investigated. The average particle size was measured to be 12.7 nm even in the polydispersed form. The magnetic and dielectric characteristics of the $Fe_3O_4$ nanoparticles have also been studied and discussed in detail.