• 제목/요약/키워드: Fourier transform mass spectrometry (FTMS)

검색결과 6건 처리시간 0.017초

High Accuracy Mass Measurement Approach in the Identification of Phospholipids in Lipid Extracts: 7 T Fourier-transform Mass Spectrometry and MS/MS Validation

  • Yu, Seong-Hyun;Lee, Youn-Jin;Park, Soo-Jin;Lee, Ye-Won;Cho, Kun;Kim, Young-Hwan;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1170-1178
    • /
    • 2011
  • In the present study, the approach of high accuracy mass measurements for phospholipid identifications was evaluated using a 7 T ESI-FTMS/linear ion trap MS/MS. Experiments were carried out for porcine brain, bovine liver, and soybean total lipid extracts in both positive and negative ion modes. In total, 59, 55, and 18 phospholipid species were characterized in the positive ion mode for porcine brain, bovine liver, and soybean lipid extracts, respectively. Assigned lipid classes were PC, PE, PEt, PS, and SM. In the negative ion mode, PG, PS, PA, PE, and PI classes were observed. In the negative ion mode, for porcine brain, bovine liver, and soybean lipid extracts, 28, 34, and 29 species were characterized, respectively. Comparison of our results with those obtained by other groups using derivatization-LC-APCI MS and nano-RP-LC-MS/MS showed that our approach can characterize PC species as effectively as those methods could. In conclusion, we demonstrated that high accuracy mass measurements of total lipid extracts using a high resolution FTMS, particularly, 7T FTMS, plus ion-trap MS/MS are very useful in profiling lipid compositions in biological samples.

Comparable Electron Capture Efficiencies for Various Protonated Sites on the 3rd Generation Poly(Propylene Imine) Dendrimer Ions: Applications by SORI-CAD and Electron Capture Dissociation Mass Spectrometry (ECD MS)

  • Han, Sang-Yun;Lee, Sun-Young;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권5호
    • /
    • pp.740-746
    • /
    • 2005
  • In this article, we report the tandem mass spectrometry investigations for the electron capture efficiencies of the protons belonging to the different locations (generations) in a poly(propylene imine) dendrimer with three layers of a repeat unit (named as the third generation dendrimer). The employed tandem mass spectrometry methods include SORI-CAD (sustained off-resonance irradiation collisional activation dissociation) and ECD(electron capture dissociation) mass spectrometry. We obtained SORI-CAD spectra for the dendrimer ions in the different charge states, ranging from 2+ to 4+. The analysis of fragmentation sites provides the information as to where the protons are distributed among various generations of the dendrimer. Based upon this, a new strategy to study the electron capture efficiencies of the protons is utilized to examine a new type of triplycharged ions by SORI-CAD, i.e., the 3+ ions generated from the charge reduction of the native 4+ ions by ECD: (M+4H)$^{4+}\;+\;e^-\;{\rightarrow}$ (M+4H)$^{3+\bullet}$ ${\rightarrow}\;({H^{\bullet}}_{ejected}$) + (M+3H)$^{3+}\;\rightarrow$ CAD. Interestingly, comparison of these four SORICAD spectra indicates that the proton distribution in the charge-reduced 3+ ions is very close to that in the native 4+ ions. It further suggests that in this synthetic polymer ($\sim$1.7 kDa) with an artificial architecture, the electron capture efficiencies of the protons are actually insensitive to where they are located in the molecule. This is somewhat contradictory to common expectations that the protons in the inner generations may not be well exposed to the incoming electron irradiation as much as the outer ones are, thus may be less efficient for electron capture. This finding may carry some implications for the case of medium sized peptide ions with similar masses, which are known to show no obvious site-specific fragmentations in ECD MS.

A Variety of Activation Methods Employed in “Activated-Ion” Electron Capture Dissociation Mass Spectrometry: A Test against Bovine Ubiquitin 7+ Ions

  • Oh, Han-Bin;McLafferty, Fred W.
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권3호
    • /
    • pp.389-394
    • /
    • 2006
  • Fragmentation efficiencies of various ‘activated-ion’ electron capture dissociation (AI-ECD) methods are compared for a model system of bovine ubiquitin 7+ cations. In AI-ECD studies, sufficient internal energy was given to protein cations prior to ECD application using IR laser radiation, collisions, blackbody radiation, or in-beam collisions, in turn. The added energy was utilized in increasing the population of the precursor ions with less intra-molecular noncovalent bonds or enhancing thermal fluctuations of the protein cations. Removal of noncovalent bonds resulted in extended structures, which are ECD friendly. Under their best conditions, a variety of activation methods showed a similar effectiveness in ECD fragmentation. In terms of the number of fragmented inter-residue bonds, IR laser/blackbody infrared radiation and ‘in-beam’ activation were almost equally efficient with ~70% sequence coverage, while collisions were less productive. In particular, ‘in-beam’ activation showed an excellent effectiveness in characterizing a pre-fractionated single kind of protein species. However, its inherent procedure did not allow for isolation of the protein cations of interest.

Substituent Effect on Fragmentations and Ion-Molecule Reactions of Ionized Alkyn Alcohols

  • Choi, Sung-Seen;So, Hun-Young;Kim, Beom-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권4호
    • /
    • pp.609-613
    • /
    • 2005
  • The fragmentation patterns and ion-molecule reactions of two alkyn alcohols, 2-propyn-1-ol (HC≡$CCH_2$OH) and 2-methyl-3-butyn-2-ol (HC≡CC($CH_3)_2$OH), were investigated using Fourier transform mass spectrometry (FTMS). The most abundant fragment ions formed from the molecular ions were [M-H]$^+$ for 2-propyn-1-ol and [M-$CH_3]^+$ for 2-methyl-3-butyn-2-ol. The dehydrated ion, [M-$H_2O]^+$ was formed only from 2-propyn-1-ol in which $\alpha$ -hydrogen atoms were available for $\alpha,\;\alpha$ -elimination reaction. The protonated molecules were dissociated into [M+H-$H_2O]^+$ and [M+H-$C_2H_2]^+$ through dehydration and deacetylenylation processes. The formations of [M+H-$H_2O]^+$ and [M+H-$C_2H_2]^+$ from 2-methyl-3-butyn-2-ol were more favorable than those from 2-propyn-1-ol due to stabilization by two methyl groups at $\alpha$ -carbon. Ion-neutral complexes formed at long ion trapping time gave dehydrated and/or deacetylenylated ion products by further dissociation.

Proton Transfer Reactions and Ion-Molecule Reactions of Ionized XCH2CH2Y (X and Y = OH or NH2)

  • Choi, Sung-Seen;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권4호
    • /
    • pp.539-544
    • /
    • 2006
  • Proton transfer reactions and ion-molecule reactions of bifunctional ethanes of $H_2NCH_2CH_2NH_2$, $H_2NCH_2CH_2OH$, and $HOCH_2CH_2OH$ were studied using Fourier transform mass spectrometry (FTMS). The rate constants for proton transfer reactions between the fragment ions and neutral molecules were obtained from the temporal variation of the ion abundances. The rate constants were consistent with the heats of reaction. The fastest proton transfer reactions were the reactions of $CH_2N^+$, $CHO^+$, and $CH_3O^+$ for $H_2NCH_2CH_2NH_2$, $H_2NCH_2CH_2OH$, and $HOCH_2CH_2OH$, respectively. The $[M+13]^+$ ion was formed by the ion-molecule reaction between $H_2C=NH_2 ^+$ or $H_2C=OH^+$ and the neutral molecule. The major product ions generated from the ion-molecule reactions between the protonated molecule and neutral molecule were $[2M+H]^+$, $[M+27]^+$, and $[M+15]^+$.