DOI QR코드

DOI QR Code

A Variety of Activation Methods Employed in “Activated-Ion” Electron Capture Dissociation Mass Spectrometry: A Test against Bovine Ubiquitin 7+ Ions

  • Oh, Han-Bin (Department of Chemistry and Interdisciplinary Program of Biotechnology, Sogang University) ;
  • McLafferty, Fred W. (Department of Chemistry and Chemical Biology, Cornell University)
  • Published : 2006.03.20

Abstract

Fragmentation efficiencies of various ‘activated-ion’ electron capture dissociation (AI-ECD) methods are compared for a model system of bovine ubiquitin 7+ cations. In AI-ECD studies, sufficient internal energy was given to protein cations prior to ECD application using IR laser radiation, collisions, blackbody radiation, or in-beam collisions, in turn. The added energy was utilized in increasing the population of the precursor ions with less intra-molecular noncovalent bonds or enhancing thermal fluctuations of the protein cations. Removal of noncovalent bonds resulted in extended structures, which are ECD friendly. Under their best conditions, a variety of activation methods showed a similar effectiveness in ECD fragmentation. In terms of the number of fragmented inter-residue bonds, IR laser/blackbody infrared radiation and ‘in-beam’ activation were almost equally efficient with ~70% sequence coverage, while collisions were less productive. In particular, ‘in-beam’ activation showed an excellent effectiveness in characterizing a pre-fractionated single kind of protein species. However, its inherent procedure did not allow for isolation of the protein cations of interest.

Keywords

References

  1. Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. J. Am. Chem. Soc. 1998, 120, 3265 https://doi.org/10.1021/ja973478k
  2. Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Anal. Chem. 2000, 72, 563 https://doi.org/10.1021/ac990811p
  3. Horn, D. M.; Ge, Y.; McLafferty, F. W. Anal. Chem. 2000, 72, 4778 https://doi.org/10.1021/ac000494i
  4. Sze, S. K.; Ge, Y.; Oh, H. B.; McLafferty, F. W. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1774 https://doi.org/10.1073/pnas.251691898
  5. Sze, S. K.; Ge, Y.; Oh, H. B.; McLafferty, F. W. Anal. Chem. 2003, 75, 1599 https://doi.org/10.1021/ac020446t
  6. Zubarev, R. A. Mass Spectrom. Rev. 2003, 22, 57 https://doi.org/10.1002/mas.10042
  7. Cooper, H. J.; Häkansson, K.; Marshall, A. G. Mass Spectrom. Rev. 2005, 24, 201 https://doi.org/10.1002/mas.20014
  8. Kuster, B.; Mann, M. Curr. Opin. Chem. Biol. 1998, 8, 393
  9. Kelleher, N. L.; Lin, H. Y.; Valaskovic, G. A.; Aaserud, D. J.; Fridriksson, E. K.; McLafferty, F. W. J. Am. Chem. Soc. 1999, 121, 806 https://doi.org/10.1021/ja973655h
  10. Forbes, A. J.; Mazur, M. T.; Kelleher, N. L.; Patel, H. M.; Walsh, C. T. Proteomics 2001, 1, 927 https://doi.org/10.1002/1615-9861(200108)1:8<927::AID-PROT927>3.0.CO;2-T
  11. Zabrouskov, V.; Giacomelli, L.; van Wijk, K. J.; McLafferty, F. W. Molecular and Cellular Proteomics 2003, 2, 1253 https://doi.org/10.1074/mcp.M300069-MCP200
  12. Ge, Y.; Lawhorn, B. G.; Elnaggar, M.; Sze, S. K.; Begley, T. P.; McLafferty, F. W. Protein Sci. 2003, 12, 2320 https://doi.org/10.1110/ps.03244403
  13. Taylor, G. K.; Kim, Y. B.; Forbes, A. J.; Meng, F.; McCarthy, R.; Kelleher, N. L. Anal. Chem. 2003, 75, 4081 https://doi.org/10.1021/ac0341721
  14. Kruger, N. A.; Zubarev, R. A.; Carpenter, B. K.; Kelleher, N. L.; Horn, D. M.; McLafferty, F. W. Int. J. Mass Spectrom. 1999, 182/183, 1 https://doi.org/10.1016/S1387-3806(98)14260-4
  15. Oh, H. B.; Breuker, K.; Sze, S. K.; Ge, Y.; Carpenter, B. K.; McLafferty, F. W. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15863 https://doi.org/10.1073/pnas.212643599
  16. Breuker, K.; Oh, H. B.; Horn, D. M.; Cerda, B. A.; McLafferty, F. W. J. Am. Chem. Soc. 2002, 124, 6407 https://doi.org/10.1021/ja012267j
  17. Marshall, A. G.; Wang, T. C. L.; Ricca, T. L. J. Am. Chem. Soc. 1985, 107, 7893 https://doi.org/10.1021/ja00312a015
  18. Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Anal. Chim. Acta 1991, 246, 211 https://doi.org/10.1016/S0003-2670(00)80678-9
  19. Yu, S. H.; Lee, S. Y.; Jung, G. S.; Oh, H. B. Bull. Korean Chem. Soc. 2004, 25, 1477 https://doi.org/10.1007/s11814-008-0243-7
  20. Han, S. Y.; Lee, S. Y.; Oh, H. B. Bull. Korean Chem. Soc. 2005, 26, 740 https://doi.org/10.5012/bkcs.2005.26.5.740
  21. Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. J. Am. Soc. Mass Spectrom. 2000, 11, 320 https://doi.org/10.1016/S1044-0305(99)00157-9
  22. Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. J. Am. Soc. Mass Spectrom. 1997, 8, 954 https://doi.org/10.1016/S1044-0305(97)00085-8
  23. Li, J.; Taraszka, J. A.; Counterman, A. E.; Clemmer, D. E. Int. J. Mass Spectrom. 1999, 185/186/187, 37
  24. Purves, R. W.; Barnett, D. A.; Ellis, B.; Guevremont, R. J. Am. Soc. Mass Spectrom. 2001, 12, 894 https://doi.org/10.1016/S1044-0305(01)00272-0
  25. Myung, S.; Badman, E. R.; Lee, Y. J.; Clemmer, D. E. J. Phys. Chem. A 2002, 106, 9976 https://doi.org/10.1021/jp0206368
  26. Senko, M. W.; Speir, J. P.; McLafferty, F. W. Anal. Chem. 1994, 66, 2801 https://doi.org/10.1021/ac00090a003

Cited by

  1. Activated ion electron capture dissociation (AI ECD) of proteins: Synchronization of infrared and electron irradiation with ion magnetron motion vol.20, pp.5, 2009, https://doi.org/10.1016/j.jasms.2008.12.015
  2. Disulfide bond cleavage in TEMPO-free radical initiated peptide sequencing mass spectrometry vol.46, pp.8, 2011, https://doi.org/10.1002/jms.1955
  3. MALDI In-Source Decay Mass Spectrometry of Polyamidoamine Dendrimers vol.23, pp.10, 2012, https://doi.org/10.1007/s13361-012-0445-4
  4. Mass spectrometric analysis of protein species of biologics vol.1, pp.4, 2013, https://doi.org/10.4155/pbp.13.39
  5. Activated Ion ETD Performed in a Modified Collision Cell on a Hybrid QLT-Oribtrap Mass Spectrometer vol.24, pp.11, 2013, https://doi.org/10.1007/s13361-013-0621-1
  6. Photodissociation of TEMPO-modified peptides: new approaches to radical-directed dissociation of biomolecules vol.16, pp.10, 2014, https://doi.org/10.1039/c3cp54825b
  7. Infrared multiple photon dissociation spectroscopy and density functional theory (DFT) studies of protonated permethylated β-cyclodextrin–water non-covalent complexes vol.16, pp.18, 2014, https://doi.org/10.1039/c3cp54841d
  8. Radical-driven peptide backbone dissociation tandem mass spectrometry vol.34, pp.2, 2014, https://doi.org/10.1002/mas.21426
  9. sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry vol.50, pp.2, 2015, https://doi.org/10.1002/jms.3539
  10. Coupling Capillary Zone Electrophoresis with Electron Transfer Dissociation and Activated Ion Electron Transfer Dissociation for Top-Down Proteomics vol.87, pp.10, 2015, https://doi.org/10.1021/acs.analchem.5b00883
  11. Ion Activation Methods for Peptides and Proteins vol.88, pp.1, 2016, https://doi.org/10.1021/acs.analchem.5b04563
  12. Free Radical–Initiated Peptide Sequencing Mass Spectrometry for Phosphopeptide Post-translational Modification Analysis pp.1879-1123, 2018, https://doi.org/10.1007/s13361-018-2100-1
  13. Evaluation of the internal temperatures of an 8.6 kDa protein cation exposed to a hot dispenser cathode employed in electron capture dissociation mass spectrometry vol.20, pp.12, 2006, https://doi.org/10.1002/rcm.2533
  14. Current literature in mass spectrometry vol.42, pp.1, 2007, https://doi.org/10.1002/jms.1070
  15. Photo-Induced Dissociation of Protonated Peptide Ions in a Quadrupole Ion Trap Time-of-Flight Mass Spectrometer vol.28, pp.4, 2006, https://doi.org/10.5012/bkcs.2007.28.4.619
  16. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  17. probing the gas-phase folding kinetics of peptide ions by IR activated DR-ECD vol.19, pp.6, 2006, https://doi.org/10.1016/j.jasms.2008.01.001
  18. Characterization of permethylated β-cyclodextrin-peptide noncovalently bound complexes using electron capture dissociation mass spectrometry (ECD MS) vol.279, pp.1, 2006, https://doi.org/10.1016/j.ijms.2008.10.008
  19. Protein Analysis Using a Combination of an Online Monolithic Trypsin Immobilized Enzyme Reactor and Collisionally-Activated Dissociation/Electron Transfer Dissociation Dual Tandem Mass Spectrometry vol.33, pp.10, 2006, https://doi.org/10.5012/bkcs.2012.33.10.3233
  20. Charge-Directed Peptide Backbone Dissociations of o-TEMPO-Bz-C(O)-Peptides vol.4, pp.4, 2006, https://doi.org/10.5478/msl.2013.4.4.71
  21. Density Functional Theory (DFT) Study of Gas-phase O.C Bond Dissociation Energy of Models for o-TEMPO-Bz-C(O)-Peptide: A Model Study for Free Radical Initiated Peptide Sequencing vol.35, pp.3, 2006, https://doi.org/10.5012/bkcs.2014.35.3.770
  22. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation vol.29, pp.1, 2018, https://doi.org/10.1007/s13361-017-1808-7