• Title/Summary/Keyword: Fourier transform infrared spectrometry

Search Result 69, Processing Time 0.025 seconds

Influence of Filler and Cure Systems on Whitening of EPDM Composites by Formation of Metal Salt (충전 시스템과 가교 시스템이 금속염 형성에 의한 EPDM 복합체의 백화에 미치는 영향)

  • Chung, Hye-Seung;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.210-215
    • /
    • 2012
  • Whitening phenomena of the EPDM composites with different inorganic filler compositions which were aged at $90^{\circ}C$ for 7 days in air and tap water atmospheres, respectively, were investigated. The aged samples in tap water containing stearic acid exhibited severe whitening phenomena, while all the samples aged in air did not show any whitening. Depending on the filler compositions, there was no big difference in the whitening phenomena. The whitening materials were analyzed using gas chromatography/mass spectrometry (GC/MS), image analysis, energy-dispersive X-ray spectroscopy (EDX), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The whitening materials were identified to be salts of stearic acid. The salts of stearic acid were formed by reaction of metal cation in tap water and stearic acid in the sample.

Quantitative Mass Spectrometric Analysis of Mixed Self-Assembled Monolayers for Biochips

  • Son, Jin Gyeong;Shon, Hyun Kyong;Hong, Daewha;Choi, Changrok;Han, Sang Woo;Choi, Insung S.;Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.275-275
    • /
    • 2013
  • Formation and characterization of self-assembled monolayers (SAMs) on various surfaces are the essential basis for many other applications, including molecular switches, biosensors, microfluidics, and fundamental studies in surfaces and interfaces. To improve the performance at these applications, it is a key to control the quantity of each molecule in various mixed SAMs on the surface. In this study, using mixed SAM of carbamate-based hydroquinone (HQ)-PhBr and11-mercaptoundecanol, the quantitative mass spectrometric method of mixed SAM was developed based on comparison study with XPS and FT-IR methods. In addition, our method was applied to another mixed SAM of biotinylated PEG alkane thiol and 11-mercaptoundecanol for verification purpose. Time-of-flight secondary mass spectrometry (ToF-SIMS) analysis was performed to identify and quantify each molecule of mixed SAM along with principal component analysis (PCA). Since there is no matrix effect in the X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared (FT-IR) techniques, we compared ToF-SIMS results with XPS and FT-IR results. Because PCA results from ToF-SIMS analysis are well matched with XPS and FT-IR results from both mixed SAMs, we are expecting that our method will be useful to identify and quantify each molecule in various mixed SAMs.

  • PDF

Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements

  • Lima, Adriano Fonseca;Formaggio, Stephanie Ellen Ferreira;Zambelli, Ligia Franca Aires;Palialol, Alan Rodrigo Muniz;Marchi, Giselle Maria;Saraceni, Cintia Helena Coury;de Oliveira, Marcelo Tavares
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.271-277
    • /
    • 2016
  • Objectives: In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs) on the degree of conversion (DC) and the mechanical properties of resin cements. Materials and Methods: Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG), according to the different radiant exposures (5, 10, and $20J/cm^2$) and two LCUs (single-peak and polywave). The specimens were made (7 mm in length ${\times}$ 2 mm in width ${\times}$ 1 mm in height) using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E) by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA) and post hoc Tukey's test were performed. Results: No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. Conclusions: On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.

Advances in Plant Metabolomics (식물 대사체 연구의 진보)

  • Kim, Suk-Won;Chung, Hoe-Il;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.161-169
    • /
    • 2006
  • Plant metabolomics is a plant biology field for identifying all of the metabolites found in a certain plant cell, tissue, organ, or whole plant in a given time and conditions and for studying changes in metabolic profiling as time goes or conditions change. Metabolomics is one of the most recently developed omics for holistic approach to biology and is a kind of systems biology. For holistic approach, metabolomics frequently uses chemometrics or multivariate statistical analysis of metabolic profillings. In plant biology, metabolomics is useful to determine functions of genes often in combination with DHA microarrays by analyzing tagged mutants of the model plants Arabidopsis and rice. This review paper attempted to introduce basic concepts of metabolomics and practical uses of multivariate statistical analysis of metabolic profiling obtained by $^1$H HMR and Fourier transform infrared spectrometry.

Characterization of Itraconazole Semisolid Dosage Forms Prepared by Hot Melt Technique

  • Shim, Sang-Young;Ji, Chang-Won;Sah, Hong-Kee;Park, Eun-Seok;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1055-1060
    • /
    • 2006
  • The objective of this study was to formulate itraconazole semisolid dosage forms and characterize their physicochemical properties. Itraconazole and excipients such as polysorbate 80, fatty acids, fatty alcohols, oils and organic acids were melted at $160^{\circ}C$. The fused solution was then cooled immediately at $-10^{\circ}C$ to make wax-like semisolid preparations. Their physicochemical attributes were first characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectrometry. The solubility of itraconazole in semisolid preparations and their dispersability in the simulated gastric fluid were also determined. Our semisolid preparations did not show any distinct endothermic peak of a crystalline form of itraconazole around $160-163^{\circ}C$. This suggested that it was changed into amorphous one, when it was formulated into semisolid preparations. In addition, the distinctive functional peaks and chemical shifts of itraconazole were well retained after processing into semisolid preparations. It could be inferred from the data that itraconazole was stable during incorporation into semisolid preparations by the hot melt technique. In particular, itraconazole semisolid preparations composed of polysorbate 80, fatty acids and organic acids showed good solubility and dissolution when dispersed in an aqueous medium. It was anticipated that the semisolid dosage forms would be industrially applicable to improving the bioavailability of poorly water-soluble drugs.

Oxidation of Ash Free Coal from Lignite and Anthracite Coals in a Molten Carbonate Fuel Cell (갈탄과 무연탄으로부터의 초청정석탄 제조 및 용융탄산염형 연료전지에서의 산화거동연구)

  • LEE, SANGWOO;KIM, YUJEONG;KIM, TAEKYUN;LEE, KIJEONG;LEE, CHOONGGON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • In this study, ash free coals(AFCs) were produced with lignite and anthracite coals in a microwave. The AFCs were analyzed with proximate analysis, fourier transform infrared spectrometry (FTIR), X-ray diffraction analysis, and thermogravimetric analysis (TGA). The extraction yields of the AFCs were 16.4 wt%, 7.6 wt% at lignite and anthracite coal, respectively. The chemical and physical properties of the AFCs were similar regardless of the original coal types. Oxidation behavior of the AFCs was investigated by supplying a mixture of 3g of AFC and 3g of electrolyte into the coin-type molten carbonate fuel cell (MCFC). For the evaluation of AFC fuel performance, electrochemical analysis of the steady-state polarization and step-chronopotentiometry were conducted based on the standard hydrogen fuel (69 mol% $H_2$, 17 mol% $CO_2$, 14 mol% $H_2O$). The AFCs showed similar electrochemical oxidation behaviors regardless of the original coal types. The overvoltage of the AFCs was larger than the hydrogen fuel, although OCV of the AFCs was higher.

Cure Konetics and Mechanism of DGEBA-MDA-Malononitrile System (Malononitrile로 개질된 DGEBA-MDA계의 경화반응 속도론 및 반응 메카니즘)

  • Im, Seong-Su;Jo, Seong-U;Yu, Hui-Yeol;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.215-222
    • /
    • 1993
  • Malononitrile(MN) as a reactive additive was added to Diglycidyl ether of bisphenol A (DGEBA)/Methylene dianiline (MDA) system in order to modify a thermosetting epoxy resin. Cure ki. netics and cure mechanism of this modified system were investigated by using DSC(differential scanning calorimetry) and FT-IR(fourier transform infrared spectrometry). Cure kinetics gave an information that the DGEBA/MDA system modified with MN should cure at over $110^{\circ}C$ after curing at about $80^{\circ}C$ for the complete curing. The activation energy of the first cure was nearly constant and that of the second cure was increased as the MN content was increased. Cure mechanism for the system was investigated with the samples cured every $30^{\circ}C$, from $80^{\circ}C$ to $170^{\circ}C$, for Ihr. It was known that the cure reactions of the epoxy-diamine system were composed of PA -E, SA - E and E-OH reactions. Beside these three reactions, in the DGEBA/MDA/MN system PA-CN and CN-OH reaction was found.

  • PDF

FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae

  • Fernando, I.P. Shanura;Sanjeewa, K.K. Asanka;Samarakoon, Kalpa W.;Lee, Won Woo;Kim, Hyun-Soo;Kim, Eun-A;Gunasekara, U.K.D.S.S.;Abeytunga, D.T.U.;Nanayakkara, Chandrika;de Silva, E.D.;Lee, Hyi-Seung;Jeon, You-Jin
    • ALGAE
    • /
    • v.32 no.1
    • /
    • pp.75-86
    • /
    • 2017
  • Polysaccharides of marine algae exhibit different structural characteristics and interesting biological functions. In this study, crude polysaccharides (CP) of eleven Sri Lankan marine algae obtained through hot water extraction and ethanol precipitation were investigated for DPPH, alkyl, and hydroxyl radical scavenging activities using electron spin resonance spectrometry and for intracellular reactive oxygen species scavenging activity in the Chang liver cell line. Characterization of CPs was done by Fourier transform infrared (FTIR) spectroscopy and by analysis of the monosaccharide composition. Time-dependent density functional theory quantum-chemical calculations at the RB3LYP/6-31G(d,p) level for constructed dimeric units of the corresponding polysaccharides were used to resolve the FTIR spectra. CPs from Chnoospora minima showed the highest DPPH and alkyl radical scavenging activities and higher intracellular reactive oxygen species scavenging effects for both AAPH and $H_2O_2$ induced ROS production in "Chang" cells. The major polysaccharide constituent in C. minima CP was identified as fucoidan and it displayed a higher sulfate content. The degree of sulfation of these polysaccharides suggests a positive correlation with the observed antioxidant properties.

Fe0/C-bentonite alginate beads and oyster shell fixed-bed column combined process to continuously remove N-acetyl-p-aminophenol in persulfate system

  • Wang, Bing-huang;Zhang, Qian;Honga, Jun-ming
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.301-311
    • /
    • 2018
  • In this study, the ion-gelation method was applied to fabricate novel Fe-carbon-bentonite-alginate beads ($Fe^0$/C-BABs). $Fe^0$/C-BABs could effectively control Fe release during persulfate (PS) activation in N-acetyl-p-aminophenol (APAP) oxidation. A novel two-stage approach that combined $Fe^0$/C-BABs and an oyster-shell-filled bed (OSFB) column was developed to address the low pH and high Fe concentration of the effluent of the traditional PS process. The application of the $Fe^0$/C-BABs and OSFB column regulated pH levels and Fe release during the advanced oxidation of APAP. The characteristics of $Fe^0$/C-BABs were also investigated through scanning electron microscopy, energy dispersive spectrometry, and Fourier transform infrared spectroscopy. The long-term operation performance of $Fe^0$/C-BABs in a continuous fixed-bed reactor under simultaneous PS and APAP feeding was also evaluated. The effects of initial PS concentration, pH, fixed-bed weight, in-flow rate, and dissolved oxygen (DO) were investigated. Under selected conditions, 86.3% efficiency was achieved during the first stage of APAP degradation (effluent pH of 3.05, Fe contents: $106.25mgL^{-1}$). Water quality improved after the effluent was passed through the OSFB column (effluent pH of 6.32, Fe contents: $21.43mgL^{-1}$). Moreover, this study analyzed the free radicals and intermediates produced during APAP degradation to identify the possible routes of APAP degradation.

Polarity affects the antioxidant and antimicrobial activities of jellyfish (Acromitus hardenbergi) extracts

  • Khong, Nicholas M.H.;Foo, Su Chern;Yau, Sook Kun;Chan, Kim Wei;Yusoff, Fatimah Md.
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.189-201
    • /
    • 2022
  • Jellyfish is an emerging aquaculture species, farmed for Oriental cuisines and nutraceutical ingredients. This study aimed to examine antioxidative and antimicrobial potentials of various fractions of the jellyfish, Acromitus hardenbergi. The bell and oral arms of the jellyfish were sequentially extracted with petroleum ether (PE), dichloromethane (DCM), chloroform (CHCl3), methanol (MeOH), and water (H2O) to extract its bioactive in an increasing polarity gradient. Test fractions were assayed for antiradical activities using electron spin resonance spectrometry, β-carotene-linoleate model and Folin-Ciocalteu assay; and antimicrobial activity against 2 Gram-negative bacteria, 4 Gram-positive bacteria and 2 fungal species using the disc diffusion assay. All fractions were also subjected to Fourier Transform Infrared (FTIR) analysis to identify types of functional groups present. It was found that the hydrophilic extracts (H2O fractions) possessed the most effective radical scavenging activity (p < 0.05) while the lipophilic extracts (PE fractions) the most active antimicrobial activity, especially against Gram-positive bacteria (p < 0.05). Total oxidation substrates content was found to be highest in the PE fractions of jellyfish bell and oral arms (p < 0.05). FTIR data showed that the H2O and MeOH fractions contains similar functional groups including -OH, -C=O, -N-H and -S=O groups, while the PE, DCM, and CHCl3 fractions, the -CH3, -COOH groups. This study showed that A. hardenbergi contains antioxidants and antimicrobials, thereby supporting the traditional claim of the jellyfish as an anti-aging and health-promoting functional food. Bioassay-guided fractionation approach serves as a critical milestone for the strategic screening, purification, and elucidation of therapeutically significant actives from jellyfish.