• Title/Summary/Keyword: Foundations

Search Result 1,516, Processing Time 0.03 seconds

Failure Envelope of Suction Caisson Foundations in Clay Subjected to Combined Loads (점성토 지반에 시공된 석션 케이슨 기초의 파괴포락선 산정)

  • Kang, Sangwook;Lee, Donghyun;Jung, Donghyuk;Han, Taek Hee;Ahn, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • The global increase in population and subsequent scarcity of terrestrial living spaces necessitates exploration of alternative habitats. Research into the development of underwater living areas provides promising avenues for the expansion of human living spaces and the use of marine environments. This study focuses on the failure envelope of suction caisson foundations subjected to combined loads in a marine setting, utilizing finite element analysis. The foundation is assumed to be embedded in clay characterized by a linear increase in undrained shear strength with depth, employing the von Mises constitutive model for the clay. The resulting failure envelope is represented as a tilted ellipse which expands as the undrained shear strength increases, maintaining a constant ratio between the major and minor axes. A comparative analysis of two suction caisson foundations with varying length-to-diameter ratios revealed that this ratio influences the dimensions of the failure envelope, with a tendency for the major-to-minor axis ratio to increase as the length-to-diameter ratio increases. These findings are critical for the design of suction caisson foundations in offshore environments.

Settlement Problems in Shallow Foundations (얕은 기초에서의 침하문제)

  • 이상덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.53-80
    • /
    • 2002
  • Settlement in the Shallow Foundation are presented. Various practical methods to calculate immediate settlement, consolidation settlement, and secondary compression of the compressive soils under the shallow foundation are summerized. Especially the critical depth for settlement calculation, the contact pressure, the allowable settlement of the shallow foundation are recommended.

  • PDF

계산가능성 이론 형성에서의 Church's Thesis와 Turing's Thesis

  • 현우식
    • Journal for History of Mathematics
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 1998
  • We investigate "Church's Thesis" and "Turing's Thesis", which are commonly considered as equivalent foundations of computability theory or recursion theory in mathematical logic and computer science. A careful historical and logical analysis of Godel's recursiveness, Church's ${\lambda}$-definability and Turing computability should distinguish between Church's Thesis and Turing's Thesis.and Turing's Thesis.

  • PDF

수학적 구조와 격자론

  • 홍영희
    • Journal for History of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.175-181
    • /
    • 2002
  • Since Noether has consolidated the structural approach to the study of algebra, the lattice theory has reemerged as a tool for the structural study for algebra and its own right as well in 1930s. We investigate the process which the mathematical structures made their foundations in Mathematics through the lattice theory in the period.

  • PDF

An Experimental Study on the Failure Mechanism of Foundation with Depth (근입깊이에 따른 기초지반의 파괴형태에 관한 실험적 연구)

  • Bong, Hyoun Gyu;Lee, Sang Duk;Koo, Ja Kap;Jeon, Mong Gag
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.923-932
    • /
    • 1994
  • The studies on the bearing capacity of shallow and deep foundations have been made in various fields and formulas for various failure mechanisms have been presented. But, for these models, the method of classification with foundation depth has been obscure and bearing capacity factors have not been uniformly applied. An experiment was performed, in plane strain conditions, with ground model made of carbon rods. The failure mechanism of foundation and ultimate bearing capacity with foundation depth were observed. Based on experimental results the classification between shallow and deep foundations by failure shape was tried. Various present failure mechanisms of foundation were verified through the experiment.

  • PDF

Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory

  • Zaoui, Fatima Zohra;Tounsi, Abdelouahed;Ouinas, Djamel
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.509-524
    • /
    • 2017
  • In this article, a free vibration analysis of functionally graded (FG) plates resting on elastic foundations is presented using a quasi-3D hybrid-type higher order shear deformation theory. Undetermined integral terms are employed in the proposed displacement field and modeled based on a hybrid-type (sinusoidal and parabolic) quasi-3D HSDT with five unknowns in which the stretching effect is taken into account. Thus, it can be said that the significant feature of this theory is that it deals with only 5 unknowns as the first order shear deformation theory (FSDT). The elastic foundation parameters are introduced in the present formulation by following the Pasternak (two-parameter) mathematical model. Equations of motion are obtained via the Hamilton's principles and solved using Navier's method. Accuracy of the proposed theory is confirmed by comparing the results of numerical examples with the ones available in literature.

Analysis of load sharing characteristics for a piled raft foundation

  • Ko, Junyoung;Cho, Jaeyeon;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.449-461
    • /
    • 2018
  • The load sharing ratio (${\alpha}_{pr}$) of piles is one of the most common problems in the preliminary design of piled raft foundations. A series of 3D numerical analysis are conducted so that special attentions are given to load sharing characteristics under varying conditions, such as pile configuration, pile diameter, pile length, raft thickness, and settlement level. Based on the 3D FE analysis, influencing factors on load sharing behavior of piled raft are investigated. As a result, it is shown that the load sharing ratio of piled raft decreases with increasing settlement level. The load sharing ratio is not only highly dependent on the system geometries of the foundation but also on the settlement level. Based on the results of parametric studies, the load sharing ratio is proposed as a function of the various influencing factors. In addition, the parametric analyses suggest that the load sharing ratios to minimize the differential settlement of piled raft are ranging from 15 to 48% for friction pile and from 15 to 54% for end-bearing pile. The recommendations can provide a basis for an optimum design that would be applicable to piled rafts taking into account the load sharing characteristics.

Effect of Embedment Ratio and Loading Rate on Uplift Adhesion Factor of Concrete Driven Pile (근입비와 인발속도가 콘크리트 항타말뚝의 인발부착계수에 미치는 영향)

  • Kim Jong-In;Park Jeong-Jun;Shin Eun-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • Pile foundations are utilized when soil is so weak that shallow foundations are not suitable or point load is concentrated in small area. Such soil can be formed by the land reclamation works which have extensively been executed along the coastal line of southern and western parts of the Korean Peninsula. The working load at pile is sometimes subjected to not only compression load but also lateral load sad uplift forces. But in most of the practice design, uplift capacity of pile foundation is not considered and estimation of uplift capacity is presumed on the compression skin friction. This study was carried out to determine that the effect of embedment ratio and loading rate on uplift adhesion factor of concrete pile driven in clay. Based on the test results, the critical embedment ratio is about 9. Adhesion factor is constant under the critical embedment ratio, and decreasing over the critical embedment ratio. Also, adhesion factor is increased with the loading rate is increased.