• Title/Summary/Keyword: Foundation soil

Search Result 1,113, Processing Time 0.028 seconds

The Characteristics of Various Stress in Cohesionless Soil with the Rammed Aggregate Pier (짧은 쇄석다짐말뚝(RAP)이 설치된 사질토지반의 응력변화 특성)

  • Chun, Byung-Sik;Kim, Kyung-Min;Kim, Jun-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1108-1117
    • /
    • 2005
  • RAP(rammed aggregate pier) method which is intermediate foundation of deep and shallow foundation is used to improve the ground with high compaction energy. This method is widely spread around the world, but there are few examples and systemic researches for failure mechanism and bearing capacity of this method are not organized yet. In this paper, soil laboratory tests were carried out to evaluate the applicability of RAP method as the foundation of a structure. And the bearing capacity and the failure mechanism of RAP method were studied with respect to various relative densities(35%, 65%, 90%), diameters(45mm, 60mm) and lengths(20cm, 30cm, 40cm). As results, stress concentration ratio decreased as diameter of RAP was increasing or length of RAP was decreased or relative density was decreased. however these results were not always constant. because systematic interaction between relative density and diameter and length of RAP can affect stress concentration ratio, more studies on stress concentration ratio are needed throughout laboratory and field tests.

  • PDF

Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils

  • Shariati, Mahdi;Azar, Sadaf Mahmoudi;Arjomand, Mohammad-Ali;Tehrani, Hesam Salmani;Daei, Mojtaba;Safa, Maryam
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.473-484
    • /
    • 2019
  • In this paper, the geotechnical report of the Northern Fereshteh area in Tabriz is used and the characteristics of shallow foundation of a single pile and compared pile group and geogrid in terms of the settlement of a building foundation on clayey soil. Additionally, impacts of existing variables such as the number of geogrid layers, the length of the pile, and the depth of groundwater level affected by the dynamic load caused by the Taiwan Jiji earthquake via numerical analysis using PLAXIS software are examined. The results of fifty-four models indicated that the construction of a pile group with a diameter of 1 meter and a length of 14 meters significantly diminished the consolidation settlement of the soil in the Northern Fereshteh area, where the settlement value has been triggered by the load inflicted by earthquake. Moreover, the construction of four layers of geogrid at intervals of one meter led to a significant decrease in the settlement. Finally, after reaching a maximum depth, it had no reducing effects on the foundation settlement.

Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method

  • Kim, Hyeong-Joo;Dinoy, Peter Rey T.;Choi, Hee-Seong;Lee, Kyoung-Bum;Mission, Jose Leo C.
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.523-535
    • /
    • 2019
  • Artificial Intelligence (AI) is anticipated to be the future of technology. Hence, AI has been applied in various fields over the years and its applications are expected to grow in number with the passage of time. There has been a growing need for accurate, direct, and quick prediction of geotechnical and foundation engineering models especially since the success of each project relies on numerous amounts of data. In this study, two applications of AI in the field of geotechnical and foundation engineering are presented - spatial interpolation of standard penetration test (SPT) data and prediction of consolidation of clay. SPT and soil profile data may be predicted and estimated at any location and depth at a site that has no available borehole test data using artificial intelligence techniques such as artificial neural networks (ANN) based on available geospatial information from nearby boreholes. ANN can also be used to accelerate the calculation of various theoretical methods such as the one-dimensional consolidation theory of clay with high efficiency by using lesser computation resources. The results of the study showed that ANN can be a valuable, powerful, and practical tool in providing various information that is needed in geotechnical and foundation design.

Reliability Analysis of Gravity-based Offshore Wind Turbine Foundation Considering Ocean Environmental Loads and Soil Uncertainty (해양환경하중 및 지반의 불확실성을 고려한 중력식 해상풍력 기초의 신뢰성 해석)

  • Lee, Sang Geun;Kim, Dong Hyawn
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.359-365
    • /
    • 2015
  • A reliability analysis of the gravity-based foundation of anoffshore wind turbine was performed by considering the uncertainties of the design variables, including environmental loads. The limit state functions of the gravity-based foundation were defined using the response limits of the support structures suggested in the DNV standard. The wind load couldbe obtained using the GH_bladed software, and the wave load was calculated using the Morison equation. Then, the extreme distributions of the wind and wave loads were estimated by applying the peak over threshold (POT) method to the wind and wave load data. The probability distribution characteristics of the soil properties were defined with reference to a southwest coast geotechnical survey report. The reliability index was evaluated for each failure mode using a first-order reliability method.

Reliability Analysis of Suction Bucket Foundation for Offshore Wind Turbine in Silty Sand (실트질 모래지반에 설치된 해상풍력 석션버켓기초의 신뢰성 해석)

  • Yoon, Gil Lim;Yi, Jin Hak;Bae, Kyung Tae;Kim, Sun Bin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.41-47
    • /
    • 2019
  • This paper deals with the reliability analysis of foundation for an offshore wind turbine system. Reliability analyses were carried out for suction bucket foundation considering the uncertainties in soil and structural parameters. In reliability analysis, the vertical and lateral resistances are defined as base limit states. The case studies were carried out using the preliminarily designed foundations at western-south mainland sea of Korea. From reliability analyses, vertical resistance for free-slip condition has overall lower reliability index, and submerged unit weight and internal friction angle of seabed soil are governing factors in vertical and lateral resistance in this case.

Estimation of Kinematic Soil-Structure Interaction for Deeply Embedded Foundations (깊은 직접기초의 지반-구조물 상호작용 평가)

  • Kim Seng-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.105-111
    • /
    • 2006
  • Earthquake strong motion recordings from two deeply embedded sites with instrumented structures and free-field accelerographs are used to evaluate variations between foundation-level and free-field ground motions. The foundation free-field ground motion variations are quantified in terms of frequency-dependent transmissibility function amplitude, ${\mid}H\mid$. Comparisons are then performed with an analytical model for the assumed conditions of a rigid base slab and a vertically propagating, coherent incident wave. The limiting assumptions of the model are not strictly satisfactory for actual structures, and the results of the analysis reflect not only incoherence effects, but also possible foundation flexibility and wave inclination effects. Nonetheless, the simple analytical model is in an acceptable agreement with the empirical analysis and appears to be applicable in practice.

Experimental study on the horizontal bearing characteristics of long-short-pile composite foundation

  • Chen-yu Lv;Yuan-cheng Guo;Yong-hui Li;An-di Hu-yan;Wen-min Yao
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.341-352
    • /
    • 2023
  • Long-short pile composite foundations bear both vertical and horizontal loads in many engineering applications. This study used indoor model tests to determine the horizontal bearing mechanism of a composite foundation with long and short piles under horizontal loads. A custom experimental device was developed to prevent excessive eccentricity of the vertical loading device caused by the horizontal displacement. ABAQUS software was used to analyze the influence of the load size and cushion thickness on the horizontal bearing mechanism. The results reveal that a large vertical load leads to soil densification and increases the horizontal bearing capacity of the composite foundation. The magnitude of the horizontal displacement of the pile and the horizontal load borne by the pile are related to the piles' positions. Due to different pile lengths, the long piles exhibit long pile effects and experience bending deformation, whereas the short piles rotate around a point (0.2 L from the pile bottom) as the horizontal load increases. Selecting a larger cushion thickness significantly improves the horizontal load sharing capacity of the soil and reduces the horizontal displacement of the pile top.

Model Test and Deformation Analysis of the Improved Soft Foundation( Il) (개량연약지반의 모형실험과 변형해석 (II))

  • 이진수;이문수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.73-86
    • /
    • 1994
  • Ths paper was aimed to investigate the effect of reinforcement for the deformation characteristics of clayey foundation. Among numerous improvement method of foundation, only geotextil-reinforced foundation and foundation with both geotextile and sand mat which were 2-dimensional model clayey foundations were selected for load test in order to obtain fundamental results in analizing the behavior of the foundation with geotextile. To scrutinize the behavior characteristics and effect of reinforcement, the model foundations were constructed with various conditions on the location of layout of geotextile, the number of layouts and the depth of sand mat As for the technique of the numerical analysis elasto-plastic constitutive model for clayey soil, beam element for geotextile and elastic model for sand were respectively employed. Interface element was introduced for the block between materials with different rigidity. Observed values and numerical results were compared with satisfactory correspondence, which proved that the numercial technique developed in this paper was available.

  • PDF

Foundation Design of Apartment Buildings considering Upper Structure Stiffness (상부구조물강성을 고려한 아파트 건축물의 기초판 설계 방법)

  • Lee, Kyung-Koo;Park, Hong-Gun;Noh, Jung-Tae;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.113-114
    • /
    • 2009
  • The efficient foundation design of apartment buildings needs to include the effect of upper structure on foundation behavior. In this study, a foundation design method effectively considering upper structure stiffness using finite element analysis program is proposed. The analytical study showed that the proposed method reduces the allowable soil pressure under foundation and the amount of reinforcement as well as concrete for foundation.

  • PDF

Comparison of Safety Margin of Shallow Foundation on Weathered Soil Layer According to Design Methods (설계법에 따른 풍화토 지반 얕은기초의 안전여유 비교)

  • Kim, Donggun;Hwang, Huiseok;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.55-64
    • /
    • 2016
  • In this paper bearing capacity and safety margin of shallow foundation on weathered soil ground against shear failure by using current design method of allowable stress design (ASD), load resistance factor design (LRFD) based on reliability analysis and partial safety factor design (PSFD) in Eurocode were estimated and compared to each other. Results of the plate loading test used in construction and design were collected and analysis of probability statistics on soil parameters affecting the bearing capacity of shallow foundation was performed to quantify the uncertainty of them and to investigate the resistance bias factor and covalence of ultimate bearing capacity. For the typical sections of shallow foundation in domestic field as examples, reliability index was obtained by reliability analysis (FORM) and the sensitivity analysis on soil parameters of probability variables was performed to investigate the effect of probability variable on shear failure. From stability analysis for these sections by ASD, LRFD with the target reiability index corresponding to the safety factor used in ASD and PSDF, safety margins were estimated respectively and compared.