DOI QR코드

DOI QR Code

Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils

  • Shariati, Mahdi (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University) ;
  • Azar, Sadaf Mahmoudi (Department of Civil Engineering, Tabriz Branch, Islamic Azad University) ;
  • Arjomand, Mohammad-Ali (Faculty of Civil Engineering, Shahid Rajaee Teacher Training University) ;
  • Tehrani, Hesam Salmani (School of Civil Engineering, College of Engineering, University of Tehran) ;
  • Daei, Mojtaba (Faculty of Civil Engineering, University of Tabriz) ;
  • Safa, Maryam (Institute of Research and Development, Duy Tan University)
  • Received : 2019.08.12
  • Accepted : 2019.12.10
  • Published : 2019.12.30

Abstract

In this paper, the geotechnical report of the Northern Fereshteh area in Tabriz is used and the characteristics of shallow foundation of a single pile and compared pile group and geogrid in terms of the settlement of a building foundation on clayey soil. Additionally, impacts of existing variables such as the number of geogrid layers, the length of the pile, and the depth of groundwater level affected by the dynamic load caused by the Taiwan Jiji earthquake via numerical analysis using PLAXIS software are examined. The results of fifty-four models indicated that the construction of a pile group with a diameter of 1 meter and a length of 14 meters significantly diminished the consolidation settlement of the soil in the Northern Fereshteh area, where the settlement value has been triggered by the load inflicted by earthquake. Moreover, the construction of four layers of geogrid at intervals of one meter led to a significant decrease in the settlement. Finally, after reaching a maximum depth, it had no reducing effects on the foundation settlement.

Keywords

Acknowledgement

Supported by : Tabriz municipality and engineering system

This research is funded by the administration of Tabriz municipality and engineering system. The authors would like to express their thanks to the organizations for their valuable help and support in this study

References

  1. Abu-Farsakh, M., Ardah, A. and Voyiadjis, G. (2018), "3D Finite element analysis of the geosynthetic reinforced soil-integrated bridge system (GRS-IBS) under different loading conditions", Transport. Geotech., 15, 70-83. https://doi.org/10.1016/j.trgeo.2018.04.002.
  2. Abu-Farsakh, M.Y., Chen, Q. and Yoon, S. (2008), "Use of reinforced soil foundation (RSF) to support shallow foundation", Louisiana Transportation Research Center.
  3. Afrazi, M. and Rouhanifar, S., (2019), "Experimental study on mechanical behavior of sand-rubber mixtures", Modares Civ. Eng. J., 19(4), 83-96 (In Persian).
  4. Afrazi, M., Yazdani, M., Alitalesh, M. and Fakhimi, A., (2018), "Numerical analysis of effective parameters in direct shear test by hybrid discrete -finite element method", Modares Civ. Eng. J., 18(3), 13-24 (In Persian).
  5. Alizadeh, A. and Dabiri, R. (2018), "Geotechnical illustration of Fereshteh Alley in Tabriz City", J. New Approach. Civ. Eng., 2(6), 14-32. https://doi.org/10.30469/jnace.2018.66138.
  6. Budhu, M. (1984), "Nonuniformities imposed by simple shear apparatus", Can. Geotech. J., 21(1), 125-137. https://doi.org/10.1139/t84-010.
  7. Budhu, M. (2015), Soil Mechanics Fundamentals, John Wiley & Sons.
  8. Heydari, A. and Shariati, M. (2018), "Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium", Struct. Eng. Mech., 66(6), 737-748. https://doi.org/10.12989/sem.2018.66.6.737.
  9. Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A. (2018), "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., 26(4), 485-499. https://doi.org/10.12989/scs.2018.26.4.485.
  10. Jalali, A., Daie, M., Nazhadan, S.V.M., Kazemi-Arbat, P. and Shariati, M. (2012), "Seismic performance of structures with pre-bent strips as a damper", Int. J. Phys. Sci., 7(26), 4061-4072. https://doi.org/10.5897/IJPS11.1324.
  11. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2019), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-019-00780-7.
  12. Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M. (2017), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Struct. Eng. Mech., 63(2), 259-268. https://doi.org/10.12989/sem.2017.63.2.259.
  13. Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067.
  14. Li, T. and Baus, R.L. (2005), "Nonlinear parameters for granular base materials from plate tests", J. Geotech. Geoenviron. Eng., 131(7), 907-913. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(907).
  15. Liu, L. and Dobry, R. (1997), "Seismic response of shallow foundation on liquefiable sand", J. Geotech. Geoenviron. Eng., 123(6), 557-567. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(557).
  16. Lozovyi, S. and Zahoruiko, E. (2014), "Plaxis simulation of static pile tests and determination of reaction piles influence", arXiv preprint arXiv:1411.0929.
  17. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., 30(3), 271-280. https://doi.org/10.12989/scs.2019.30.3.271.
  18. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. and Petkovic, D. (2019), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manufact., 30(3), 1247-1257. https://doi.org/10.1007/s10845-017-1306-6.
  19. Mayerhof, G. (1976), "Bearing capacity and settlemtn of pile foundations", J. Geotech. Geoenviron. Eng., 102, 197-228.
  20. Menard, L. and Broise, Y. (1975), "Theoretical and practical aspect of dynamic consolidation", Geotechnique, 25(1), 3-18. https://doi.org/10.1680/geot.1975.25.1.3.
  21. Milovancevic, M., Marinovic, J. S., Nikolic, J., Kitic, A., Shariati, M., Trung, N.T., Wakil, K. and Khorami, M. (2019), "UML diagrams for dynamical monitoring of rail vehicles", Physica A Stat. Mech. Appl., 531, 121169. https://doi.org/10.1016/j.physa.2019.121169.
  22. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013a), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., 46(6), 853-868. https://doi.org/10.12989/sem.2019.46.6.853.
  23. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., 14(5), 785-809. http://dx.doi.org/10.12989/sss.2014.14.5.785.
  24. Mohammadhassani, M., Suhatril, M., Shariati, M. and Ghanbari, F. (2013b), "Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios", Struct. Eng. Mech., 48(6), 833-848. http://dx.doi.org/10.12989/sem.2013.48.6.833.
  25. Neighbors, C., Cochran, E., Caras, Y. and Noriega, G. (2012), "Sensitivity analysis of FEMA HAZUS earthquake model: case study from King County, Washington", Nat. Hazards Rev., 14(2), 134-146. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000089.
  26. Ornek, M., Laman, M., Demir, A. and Yildiz, A. (2012), "Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil", Soils Found., 52(1), 69-80. https://doi.org/10.1016/j.sandf.2012.01.002.
  27. Sadeghipour Chahnasir, E., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamed, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., 22(4), 413-424. https://doi.org/10.12989/sss.2018.22.4.413.
  28. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. http://dx.doi.org/10.12989/scs.2016.21.3.679.
  29. Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Moghimi Azar, V., Toghroli, A., Safa, M., Tonnizam Mohamad, E., Khorami, M. and Wakil, K. (2018), "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart Struct. Syst., 22(3), 335-340. https://doi.org/10.12989/sss.2018.22.3.335.
  30. Seed, H.B. (1970), "Soil moduli and damping factors for dynamic response analysis", EERC.
  31. Shah, S., Sulong, N.R., Shariati, M. and Jumaat, M. (2015), "Steel rack connections: identification of most influential factors and a comparison of stiffness design methods", PloS one, 10(10), e0139422. https://doi.org/10.1371/journal.pone.0139422.
  32. Shahabi, S., Sulong, N., Shariati, M., Mohammadhassani, M. and Shah, S. (2016), "Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire", Steel Compos. Struct., 20(3), 651-669. http://dx.doi.org/10.12989/scs.2016.20.3.651.
  33. Shao, Z. and Vesel, A. (2015), "Modeling the packing coloring problem of graphs", Appl. Math. Modell., 39(13), 3588-3595. https://doi.org/10.1016/j.apm.2014.11.060.
  34. Shao, Z., Gholamalizadeh, E., Boghosian, A., Askarian, B. and Liu, Z. (2019), "The chiller's electricity consumption simulation by considering the demand response program in power system", Appl. Therm. Eng., 149, 1114-1124. https://doi.org/10.1016/j.applthermaleng.2018.12.121.
  35. Shao, Z., Wakil, K., Usak, M., Amin Heidari, M., Wang, B. and Simoes, R. (2018), "Kriging empirical mode decomposition via support vector machine learning technique for autonomous operation diagnosing of CHP in microgrid", Appl. Therm. Eng., 145, 58-70. https://doi.org/10.1016/j.applthermaleng.2018.09.028.
  36. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian Multiplier Method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., 29(2), 243-256. https://doi.org/10.12989/scs.2018.29.2.243.
  37. Shariati, M., Heirati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., Safa, M., Salih, M. N. and Poi-Ngian, S. (2019a), "Application of waste tire rubber aggregate in porous concrete", Smart Struct. Syst., 24(4), 553-566. https://doi.org/10.12989/sss.2019.24.4.553.
  38. Shariati, M., Mafipour, M. S., Mehrabi, P., Zandi, Y., Dehghani, D., Bahadori, A., Shariati, A., Trung, N T., Salih, M.N. and Poi-Ngian, S. (2019a), "Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.
  39. Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N.A., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019), "Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534.
  40. Shariati, M., Ramli Sulong, N.H., Shariati, A. and Kueh, A.B.H. (2016), "Comparative performance of channel and angle shear connectors in high strength concrete composites: An experimental study", Construct. Build. Mater., 120, 382-392. https://doi.org/10.1016/j.conbuildmat.2016.05.102.
  41. Shariati, M., Trung, N.T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019b), "Moment-rotation estimation of steel rack connection using extreme learning machine", Steel Compos. Struct., 31(5), 427-435. https://doi.org/10.12989/scs.2019.31.5.427.
  42. Shi, X., Hassanzadeh-Aghdam, M. and Ansari, R. (2019a), "Viscoelastic analysis of silica nanoparticle-polymer nanocomposites", Compos. Part B Eng., 158, 169-178. https://doi.org/10.1016/j.compositesb.2018.09.084.
  43. Shi, X., Jaryani, P., Amiri, A., Rahimi, A. and Malekshah, E.H. (2019b), "Heat transfer and nanofluid flow of free convection in a quarter cylinder channel considering nanoparticle shape effect", Powder Technol., 346, 160-170. https://doi.org/10.1016/j.powtec.2018.12.071.
  44. Sinaei, H., Shariati, M., Abna, A. H., Aghaei, M. and Shariati, A. (2012), "Evaluation of reinforced concrete beam behaviour using finite element analysis by ABAQUS", Sci. Res. Essays, 7(21), 2002-2009. https://doi.org/10.5897/SRE11.1393.
  45. Suhatril, M., Osman, N., Sari, P. A., Shariati, M. and Marto, A. (2019), "Significance of surface eco-protection techniques for cohesive soils slope in Selangor, Malaysia", Geotech. Geol. Eng., 37(3), 2007-2014. https://doi.org/10.1007/s10706-018-0740-3.
  46. Taheri, E., Firouzianhaji, A., Yousefi, N., Mehrabi, P., Ronagh, H. and Samali, B. (2019), "Investigation of a method for strengthening perforated cold-formed steel profiles under compression loads", Appl. Sci., 9(23), 5085. https://doi.org/10.3390/app9235085.
  47. Tahmasbi, F., Maleki, S., Shariati, M., Sulong, N.R. and Tahir, M. (2016), "Shear capacity of C-shaped and L-shaped angle shear connectors", PloS One, 11(8), e0156989. https://doi.org/10.1371/journal.pone.0156989.
  48. Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, John Wiley & Sons.
  49. Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., 17(5), 623-639. http://dx.doi.org/10.12989/scs.2014.17.5.623.
  50. Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E.T. and Khorami, M. (2018a), "A review on pavement porous concrete using recycled waste materials", Smart Struct. Syst., 22(4), 433-440. https://doi.org/10.12989/sss.2018.22.4.433
  51. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2018b), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intell. Manufact., 29(8), 1793-1801. https://doi.org/10.12989/sss.2018.22.4.433.
  52. Trung, N.T., Shahgoli, A. F., Zandi, Y., Shariati, M., Wakil, K., Safa, M. and Khorami, M. (2019), "Moment-rotation prediction of precast beam-to-column connections using extreme learning machine", Struct. Eng. Mech., 70(5), 639-647. https://doi.org/10.12989/sem.2019.70.5.639.
  53. Van Baars, S. (2014), "The inclination and shape factors for the bearing capacity of footings", Soils Found., 54(5), 985-992. https://doi.org/10.1016/j.sandf.2014.09.004.
  54. Van Den Einde, L., Restrepo, J., Conte, J., Luco, E., Seible, F., Filiatrault, A., Clark, A., Johnson, A., Gram, M. and Kusner, D. (2004), "Development of the George E. Brown Jr. network for earthquake engineering simulation (NEES) large high performance outdoor shake table at the University of California, San Diego", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
  55. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441. http://doi.org/10.12989/scs.2019.30.5.433.
  56. Xu, C., Zhang, X., Haido, J.H., Mehrabi, P., Shariati, A., Mohamad, E.T., Nguyen, H. and Wakil, K. (2019), "Using genetic algorithms method for the paramount design of reinforced concrete structures", Struct. Eng. Mech., 71(5), 503-513. https://doi.org/10.12989/sem.2019.71.5.503.
  57. Xu, C., Zhang, X., Haido, J.H., Mehrabi, P., Shariati, A., Mohamad, E.T., Hoang, N. and Wakil, K. (2019), "Using genetic algorithms method for the paramount design of reinforced concrete structures", Struct. Eng. Mech., 71(5), 503-513. https://doi.org/10.12989/sem.2019.71.5.503.
  58. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M. H., Sedghi, Y. and Wakil, K. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., 28(4), 439-447. https://doi.org/10.12989/scs.2018.28.4.439.
  59. Ziaei-Nia, A., Shariati, M. and Salehabadi, E. (2018), "Dynamic mix design optimization of high-performance concrete", Steel Compos. Struct., 29(1), 67-75. https://doi.org/10.12989/scs.2018.29.1.067.
  60. Zirakian, T. and Zhang, J. (2015), "Structural performance of unstiffened low yield point steel plate shear walls", J. Construct. Steel Res. 112, 40-53. https://doi.org/10.1016/j.jcsr.2015.04.023.

Cited by

  1. Elevated temperature resistance of concrete columns with axial loading vol.9, pp.4, 2019, https://doi.org/10.12989/acc.2020.9.4.355
  2. Computational analysis of three dimensional steel frame structures through different stiffening members vol.35, pp.2, 2019, https://doi.org/10.12989/scs.2020.35.2.187
  3. Influence of porosity and cement grade on concrete mechanical properties vol.10, pp.5, 2019, https://doi.org/10.12989/acc.2020.10.5.393
  4. Prediction of total sediment load: A case study of Wadi Arbaat in eastern Sudan vol.26, pp.6, 2019, https://doi.org/10.12989/sss.2020.26.6.781
  5. Field Monitoring and Numerical Analysis of the Reinforced Concrete Foundation of a Large-Scale Wind Turbine vol.2021, 2021, https://doi.org/10.1155/2021/7656613
  6. Optimization algorithms for composite beam as smart active control of structures using genetic algorithms vol.27, pp.6, 2019, https://doi.org/10.12989/sss.2021.27.6.1041
  7. Application of multi-hybrid metaheuristic algorithm on prediction of split-tensile strength of shear connectors vol.28, pp.2, 2019, https://doi.org/10.12989/sss.2021.28.2.167