• Title/Summary/Keyword: Fortification Technology

Search Result 60, Processing Time 0.024 seconds

Seismic performance of high strength steel frames with variable eccentric braces based on PBSD method

  • Li, Shen;Wang, Ze-yu;Guo, Hong-chao;Li, Xiao-lei
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.527-542
    • /
    • 2020
  • In traditional eccentrically braced steel frames, damages and plastic deformations are limited to the links and the main structure members are required tremendous sizes to ensure elasticity with no damage based on the force-based seismic design method, this limits the practical application of the structure. The high strength steel frames with eccentric braces refer to Q345 (the nominal yield strength is 345 MPa) steel used for links, and Q460 steel utilized for columns and beams in the eccentrically brace steel frames, the application of high strength steels not only brings out better economy and higher strength, but also wider application prospects in seismic fortification zone. Here, the structures with four type eccentric braces are chosen, including K-type, Y-type, D-type and V-type. These four types EBFs have various performances, such as stiffness, bearing capacity, ductility and failure mode. To evaluate the seismic behavior of the high strength steel frames with variable eccentric braces within the similar performance objectives, four types EBFs with 4-storey, 8-storey, 12-storey and 16-storey were designed by performance-based seismic design method. The nonlinear static behavior by pushover analysis and dynamic performance by time history analysis in the SAP2000 software was applied. A total of 11 ground motion records are adopted in the time history analysis. Ground motions representing three seismic hazards: first, elastic behavior in low earthquake hazard level for immediate occupancy, second, inelastic behavior of links in moderate earthquake hazard level for rapid repair, and third, inelastic behavior of the whole structure in very high earthquake hazard level for collapse prevention. The analyses results indicated that all structures have similar failure mode and seismic performance.

Microencapsulation of Korean Mistletoe (Viscum album var. coloratum) Extract and Its Application into Milk

  • Kim, N.C.;Kim, J.B.;Kwak, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.299-306
    • /
    • 2008
  • This study was designed to develop microencapsulated Korean mistletoe extract, to determine the stability in vitro and to examine its application in milk. Coating materials used were polyglycerol monostearate (PGMS) and medium-chain triacylglyderol (MCT). The highest efficiency of microencapsulation was 78.3% with 15:1:40 (w/w/v) as PGMS : mistletoe extract : distilled water and 66.1% with 15:1 (w/w) as MCT : mistletoe extract. The size of microcapsule was about 30.0 and $19.5{\mu}m$ with PGMS and MCT, respectively. When microcapsules of mistletoe extract were incubated in simulated gastric fluid at pH 2 for 60 min, 14.8 and 17.2% of lectin was released from capsules which were coated with PGMS and MCT, respectively. Comparatively, 83.2 and 87.3% of lectin was released in simulated intestinal fluid (pH 8) after 60 min incubation of capsules coated with PGMS and MCT, respectively. The subsequent study determined the changes of physicochemical and sensory characteristics of milk with fortification of the mistletoe extract microcapsules during 12 day storage. TBA value was significantly lower in microcapsule-added groups than in the uncapsulated mistletoe extract-added group during the storage. When 100 ppm microencapsulated mistletoe extract was added, the L-, a- and b- values and viscosity were not significantly different from those of the control. In addition, the release of lectin from mistletoe extract over 12 days was 8.3 and 9.5 mg/100 ml in milk containing microcapsules made by PGMS and MCT, respectively. All sensory attributes showed a significant difference in uncapsulated mistletoe extract-added milk compared with other groups. The present study indicated that microcapsules of Korean mistletoe extract could be applied to milk and microcapsules coated with PGMS were effectively released in a simulated intestinal environment.

A study on the Chronological Recordings and construction method of Wooden Pagoda Sites of Baekjae (백제(百濟) 목탑지(木塔地) 편년(編年)과 축기부(軸基部) 축조기법(築造技法)에 관한 연구(硏究))

  • Cho, Weon-Chang
    • Journal of architectural history
    • /
    • v.17 no.4
    • /
    • pp.65-82
    • /
    • 2008
  • The wooden pagoda sites which have been confirmed in Baekjae's former territory so far have flattened surface of the earth or foundation pert made by digging up the earth. In particular, the latter is found more often in the pagoda sites of Baekjae, which is essential and absolutely necessary because of the characteristics of pagoda structure. The wooden pagoda sites with foundation part made by digging up the earth under the stylobate are found at Yongjeongli ruined temple site of Woongjin area, and at Neung-sa temple site, Wangheung-sa temple site, Geumgang-sa temple site, and Mireuk-sa temple site of Sabi period. They are also observed at Hwanglyong-sa nine-storied wooden pagoda of Shilla and at Biin five-storied stone pagoda of early Goryeo. They are important data improving that the construction technologies of Baekjae continued to be applied to build stone or wooden pagodas, transcending time and space. Recently, the site assumed as a wood pagoda site of Hanseong area was examined in Gyeongdang sect ion of Pungnap mud fortification. If this is proved to be a real wooden pagoda site, this digging-up construction technology of foundation part ann be concluded to be a traditional engineering technology of Baekjae which was frequently used from Hanseong period to Sabi period. On the other hand, this digging-up construction technology of foundation part has been found only at pagoda sites and main building sites of temple ruins, and it helps examine their symbolism.

  • PDF

Use of Fish Oil Nanoencapsulated with Gum Arabic Carrier in Low Fat Probiotic Fermented Milk

  • Moghadam, Farideh Vahid;Pourahmad, Rezvan;Mortazavi, Ali;Davoodi, Daryoush;Azizinezhad, Reza
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.309-323
    • /
    • 2019
  • Fish oil consists of omega-3 fatty acids which play an important role in human health. Its susceptibility to oxidation causes considerable degradation during the processing and storage of food products. Accordingly, encapsulation of this ingredient through freeze drying was studied with the aim of protecting it against environmental conditions. Gum arabic (GA) was used as the wall material for fish oil nanoencapsulation where tween 80 was applied as the emulsifier. A water-in-oil (W/O) emulsion was prepared by sonication, containing 6% fish oil dispersed in aqueous solutions including 20% and 25% total wall material. The emulsion was sonicated at 24 kHz for 120 s. The emulsion was then freeze-dried and the nanocapsules were incorporated into probiotic fermented milk, with the effects of nanocapsules examined on the milk. The results showed that the nanoparticles encapsulated with 25% gum arabic and 4% emulsifier had the highest encapsulation efficiency (EE) (87.17%) and the lowest surface oil (31.66 mg/100 kg). Using nanoencapsulated fish oil in fermented milk significantly (p<0.05) increased the viability of Lactobacillus plantarum as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents. The fermented milk sample containing fish oil nanoencapsulated with 25% wall material and 4% emulsifier yielded the greatest probiotic bacterial count (8.41 Log CFU/mL) and the lowest peroxide value (0.57 mEq/kg). Moreover, this sample had the highest EPA and DHA contents. Utilizing this nanoencapsulated fish oil did not adversely affect fermented milk overall acceptance. Therefore, it can be used for fortification of low fat probiotic fermented milk.

A Review on Processing Opportunities for the Development of Camel Dairy Products

  • Muhammad Asif Arain;Sundus Rasheed;Arham Jaweria;Gul Bahar Khaskheli;Ghulam Shabir Barham;Shabbir Ahmed
    • Food Science of Animal Resources
    • /
    • v.43 no.3
    • /
    • pp.383-401
    • /
    • 2023
  • Camel milk has a significant and pivotal role in the diet of people residing in semi-arid and arid regions. Ever since ancient times, marketing of camel milk has remained insignificant due to nonexistence of processing amenities in the camel nurturing areas, hence the utilization of unprocessed camel milk has continuously remained limited at family level by the nomads. Due to the superior medicinal values and health promoting effects, incredible growth in the demand of camel milk and dairy products have been noticed all over the world during last two decades. Such emergence has led dairy industry to provide diversified camel dairy products to the consumers with superior nutritional and functional qualities. In contrast to bovine, very few food products derived from camel milk are available in the present market. With the advancements in food processing interventions, a wide range of dairy and non-dairy products could be obtained from camel milk, including milk powder, cheese, yogurt, ice cream, and even chocolate. In some regions, camel milk is used for traditional dishes such as fermented milk, camel milk tea, or as a base for soups and stews. Current review highlights the processing opportunities regarding the transformation of camel milk into various dairy products via decreasing the inherent functionality that could be achieved by optimization of processing conditions and alteration of chemical composition by using fortification method. Additionally, future research directions could be devised to improve the product quality.

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu;Zhen-Dong Cui;Li Yuan
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.167-181
    • /
    • 2024
  • The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.

Current status of CRISPR/Cas9 base editor technologies and their applications in crop precision breeding

  • Kim, Rigyeong;Song, Jaeeun;Ga, Eunji;Min, Myung Ki;Lee, Jong-Yeol;Lim, Sun-Hyung;Kim, Beom-Gi
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.885-895
    • /
    • 2019
  • Plant biotechnologists have long dreamed of technologies to manipulate genes in plants at will. This dream has come true partly through the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, which now has been used to edit genes in several important crops. However, there are many restrictions in editing a gene precisely using the CRISPR/Cas9 technology because CRISPR/Cas9 may cause deletions or additions in some regions of the target gene. Several other technologies have been developed for gene targeting and precision editing. Among these, base editors might be the most practically and efficiently used compared to others. Base editors are tools which are able to cause a transition from cytosine into thymine, or from adenine into guanine very precisely on specific sequences. Cytosine base editors basically consist of nCas9, cytosine deaminase, and uracil DNA glycosylase inhibitor (UGI). Adenine base editors consist of nCas9 and adenine deaminase. These were first developed for human cells and have since also been applied successfully to crops. Base editors have been successfully applied for productivity improvement, fortification and herbicide resistance of crops. Thus, base editor technologies start to open a new era for precision gene editing or breeding in crops and might result in revolutionary changes in crop breeding and biotechnology.

Stability of Casein-Pectin Mixtures in Apple Juice (사과주스에서 카제인-펙틴 혼합물의 안정성)

  • Choi, Moon-Jung;Yoo, Seung-Hwa;Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1433-1436
    • /
    • 2000
  • The effect of addition of pectin on the stability of casein solution was studied to apply casein-pectin mixture to apple juice. The solubility of 0.1% casein solution was below 20% at pH 3-5. However, the solubility of 0.1% casein-0.1% pectin mixtures was over 70% at pH 2-10. The increase in the concentration of casein-pectin mixture showed adverse effect on the solubility. The apple juice (pH 3.4), containing 0.1-0.5% casein-pectin mixtures, remained stable without the precipitation of casein. The stability of apple juice including casein-pectin mixture was maintained upon heating at $100^{\circ}C$ for 10 minutes or refrigerating for a week. This study suggested the possibility of protein fortification to acidic beverages since casein-pectin mixture maintained stability in apple juice.

  • PDF

Establishment of Pre-Harvest Residue Limit (PHRL) of Fungicides Azoxystrobin and Difenoconazole on Prunus mume fruits (매실 중 살균제 azoxystrobin과 difenoconazole의 생산단계 잔류허용기준 설정)

  • Lee, Dong Yeol;Kim, Yeong Jin;Park, Min Ho;Lee, Seung Hwa;Kim, Sang Gon;Kang, Nam Jun;Kang, Kyu Young
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.307-313
    • /
    • 2013
  • This study was carried out to investigate the residual characteristics of fungicide azoxystrobin and difenoconazole in Prunus mume fruits, and establish pre-harvest residue limits (PHRL) based on dissipation and biological half-lives of fungicide residues. The fungicides were sprayed onto the crop at recommended dosage once and 3 times in 7 days interval, respectively. The samples were harvested at 0, 1, 2, 4, 6, 8, 10, 12 and 14 days after treatment. These residual pesticides were extracted with QuEChERS method, clean-up with $NH_2$ SPE cartridge, and residues were analyzed by HPLC/DAD and GLC/ECD, respectively. Method quantitative limits (MQL) of azoxystrobin were 0.03 mg $kg^{-1}$ and of difenoconazole were 0.006 mg $kg^{-1}$. Average recovery were $93.2{\pm}2.49%$, $85.5{\pm}1.97%$ for azoxystrobin at fortification levels at 0.3 and 1.5 mg $kg^{-1}$, and $100.8{\pm}6.74%$, $87.6{\pm}9.92%$ for difenoconazole at fortification levels at 0.06 and 0.3 mg $kg^{-1}$, respectively. The biological half-lives of azoxystrobin were 5.9 and 5.2 days at recommended dosage once and 3 times in 7 days interval, respectively. The biological half-lives of difenoconazole were 9.3 and 8.0 days at recommended dosage once and 3 times in 7 days interval, respectively. The PHRL of azoxystrobin and difenoconazole were recommended as 5.32 and 1.64 mg $kg^{-1}$ for 10 days before harvest, respectively.

Physicochemical Properties of Dextran Produced by Leuconostoc mesenteroides SM according to Concentration of Yeast Extract and its Modulation of Rheological Properties (효모 추출물 농도에 따른 Leuconostoc mesenteroides SM에 의해 생산된 dextran의 물리화학적 특성 및 물성개량)

  • Kim, Ji-Eun;Whang, Key;Lee, Sam-Pin
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.216-223
    • /
    • 2012
  • Dextran was produced by $Leuconostoc$ $mesenteroides$ SM with various contents of yeast extract and its rheological properties were modulated, via an addition of hydroxypropyl methylcellulose (HPMC) of different viscosities. The conversion yield reached 90% after adding 3% yeast extract, which remained constant, thereafter. The acidity of the cultures was approximately 1.4 and 0.9% after fermentation for 24 h at 25 and $30^{\circ}C$, respectively. The total dextran content (107.3 g/kg) was the highest in the presence of the 3% yeast extract. Under the same conditions, the consistency, viscous modulus (G"), and elastic modulus (G') of the cultures were $37.6\;Pa{\cdot}s^n$, 38 Pa, and 50 Pa, respectively. The rheological properties of the culture were changed drastically by the fortification with HPMC of higher concentration and viscosity. The addition of 10% HPMC (4,000 cp) resulted in a significant increase in G" to 1,950 Pa. Furthermore, adding HPMC to a viscous culture resulted in a remarkable increase in both hardness and firmness.