• 제목/요약/키워드: Formula for the solutions (of equations)

검색결과 26건 처리시간 0.023초

SIF AND FINITE ELEMENT SOLUTIONS FOR CORNER SINGULARITIES

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • 제34권5호
    • /
    • pp.623-632
    • /
    • 2018
  • In [7, 8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous boundary conditions, compute the finite element solutions using standard FEM and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. Their algorithm involves an iteration and the iteration number depends on the acuracy of stress intensity factors, which is usually obtained by extraction formula which use the finite element solutions computed by standard Finite Element Method. In this paper we investigate the dependence of the iteration number on the convergence of stress intensity factors and give a way to reduce the iteration number, together with some numerical experiments.

백색잡음 미분방정식에 대한 디지탈 시뮬레이션 (Digital simulation of differential equations driven by white noise)

  • 조항주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.383-388
    • /
    • 1991
  • This paper analizes two numerical integration methods, both based on the Runge Kutta 4-th order formula for deterministic systems, for digital simulation of a differential equation driven by white noise. It is shown that a "standard' Runge Kutta method for stochasitic systems yields solutions of Stratonovich differential equations, while Riggs and Phillips' method results in solutions of Ito differential equations. Therefore the white noise differential equation must be converted into the equivalent Ito equation before the latter method is used. Digital simulation results for a simple differential equation are also presented.nted.

  • PDF

CONTROL PROBLEMS FOR NONLINEAR RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Kim, Han-Geul
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.445-453
    • /
    • 2007
  • This paper deals with the approximate controllability for the nonlinear functional differential equations with time delay and studies a variation of constant formula for solutions of the given equations.

COUNTING FORMULA FOR SOLUTIONS OF DIAGONAL EQUATIONS

  • Moon, Young-Gu;Lee, June-Bok;Park, Young-Ho
    • 대한수학회보
    • /
    • 제37권4호
    • /
    • pp.803-810
    • /
    • 2000
  • Let N($d_1,...,{\;}d_n;c_1,...,{\;}c_n$) be the number of solutions $(x_1,...,{\;}x_n){\in}F^{n}_p$ of the diagonal equation $c_lx_1^{d_1}+c_2x_2^{d_2}+{\cdots}+c_nx_n^{d_n}{\;}={\;}0{\;}n{\geq},{\;}c_j{\;}{\in}{\;}F^{*}_q,{\;}j=1,2,...,{\;}n$ where $d_j{\;}>{\;}1{\;}and{\;}d_j{\;}$\mid${\;}q{\;}-{\;}1$ for all j = 1,2,..., n. In this paper, we find all n-tuples ($d_1,...,{\;}d_n$) such that the reduced form of ($d_1,...,{\;}d_n$) and N($d_1,...,{\;}d_n;c_1,...,{\;}c_n$) are the same as in the theorem obtained by Sun Qi [3]. Improving this, we also get an explicit formula for the number of solutions of the diagonal equation, unver a certain natural restriction on the exponents.

  • PDF

NUMERICAL SOLUTIONS FOR SPACE FRACTIONAL DISPERSION EQUATIONS WITH NONLINEAR SOURCE TERMS

  • Choi, Hong-Won;Chung, Sang-Kwon;Lee, Yoon-Ju
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1225-1234
    • /
    • 2010
  • Numerical solutions for the fractional differential dispersion equations with nonlinear forcing terms are considered. The backward Euler finite difference scheme is applied in order to obtain numerical solutions for the equation. Existence and stability of the approximate solutions are carried out by using the right shifted Grunwald formula for the fractional derivative term in the spatial direction. Error estimate of order $O({\Delta}x+{\Delta}t)$ is obtained in the discrete $L_2$ norm. The method is applied to a linear fractional dispersion equations in order to see the theoretical order of convergence. Numerical results for a nonlinear problem show that the numerical solution approach the solution of classical diffusion equation as fractional order approaches 2.

SINGULAR AND DUAL SINGULAR FUNCTIONS FOR PARTIAL DIFFERENTIAL EQUATION WITH AN INPUT FUNCTION IN H1(Ω)

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • 제38권5호
    • /
    • pp.603-610
    • /
    • 2022
  • In [6, 7] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous boundary conditions, compute the finite element solutions using standard FEM and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. They considered a partial differential equation with the input function f ∈ L2(Ω). In this paper we consider a PDE with the input function f ∈ H1(Ω) and find the corresponding singular and dual singular functions. We also induce the corresponding extraction formula which are the basic element for the approach.

THE SINGULARITIES FOR BIHARMONIC PROBLEM WITH CORNER SINGULARITIES

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • 제36권5호
    • /
    • pp.583-591
    • /
    • 2020
  • In [8, 9] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with corner singularities, compute the finite element solutions using standard Finite Element Methods and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. The error analysis was given in [5]. In their approaches, the singular functions and the extraction formula which give the stress intensity factor are the basic elements. In this paper we consider the biharmonic problems with the cramped and/or simply supported boundary conditions and get the singular functions and its duals and find properties of them, which are the cornerstones of the approaches of [8, 9, 10].

PERELMAN TYPE ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES FOR WEIGHTED DOUBLY NONLINEAR DIFFUSION EQUATIONS UNDER CURVATURE DIMENSION CONDITION

  • Wang, Yu-Zhao
    • 대한수학회보
    • /
    • 제58권6호
    • /
    • pp.1539-1561
    • /
    • 2021
  • We prove Perelman type 𝒲-entropy formulae and differential Harnack estimates for positive solutions to weighed doubly nonlinear diffusion equation on weighted Riemannian manifolds with CD(-K, m) condition for some K ≥ 0 and m ≥ n, which are also new for the non-weighted case. As applications, we derive some Harnack inequalities.