• Title/Summary/Keyword: Forming method

Search Result 2,606, Processing Time 0.025 seconds

Application of IDA Method for Hull Plate Forming by Multi-Point Press Forming (다점 프레스를 이용한 곡면 성형의 가공 정보 산출을 위한 IDA방법)

  • Yoon, Jong-Sung;Lee, Jang-Hyun;Ryu, Cheol-Ho;Hwang, Se-Yun;Lee, Hwang-Beom
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2008
  • Flame bending has been extensively used in the shipbuilding industry for hull plate forming In flame bending it is difficult to obtain the desired shape because the residual deformation dependson the complex temperature distribution and the thermal plastic strain. Mechanical bending such as reconfigurable press forming multi-point press forming or die-less forming has been found to improve the automation of hull plateforming because it can more accurately control the desired shape than line heating. Multi-point forming is a process in which external forces are used to form metal work-pieces. Therefore it can be a flexible and efficient forming technique. This paper presents an optimal approach to determining the press-stroke for multi-point press forming of curved shapes. An integrated configuration of Finite element analysis (FEA) and spring-back compensation algorithm is developed to calculate the strokes of the multi-point press. Not only spring-back is modeled by elastic plastic shell elements but also an iterative algorithm to compensate the spring-back is applied to adjust the amount of pressing stroke. An iterative displacement adjustment (IDA) method is applied by integration of the FEA procedure and the spring-back compensation work. Shape deviation between the desired surface and deform£d plate is minimized by the IDA algorithm.

Application of Operating Window to Robust Process Optimization of Sheet Metal Forming (기능창을 이용한 박판성형의 공정 최적화)

  • Kim, Kyungmo;Yin, Jeong Je;Suh, Yong S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.110-121
    • /
    • 2009
  • It is essential to embed product quality in the design process to win the global competition. Many components found in many products including automobiles and electronic devices are fabricated using sheet metal forming processes. Wrinkle and fracture are two types of defects frequently found in the sheet metal forming process. Reducing such defects is a hard problem as they are affected by many uncontrollable factors. Attempts to solve the problem based on traditional deterministic optimization theories are often led to failures. Furthermore, the wrinkle and fracture are conflicting defects in such a way that reducing one defect leads to increasing the other. Hence, it is a difficult task to reduce both of them at the same time. In this research, a new design method for reducing the rates of conflicting defects under uncontrollable factors is presented by using operating window and a sequential search procedure. A new SN ratio is proposed to overcome the problems of a traditional SN ratio used in the operating window technique. The method is applied to optimizing the robust design of a sheet metal forming process. To show the effectiveness of the proposed method, a comparison is made between the traditional and the proposed methods using simulation software, applied to a design of particular sheet metal forming process problem. The results show that the proposed method always gives a more robust design that is less sensitive to noises than the traditional method.

  • PDF

A Study of Developing Stamping Die by Using One-Step Form Method in Auto-Body Panel Stamping Process (차체 판넬 스템핑 공정에서 One-step Form 해석방법을 이용한 금형개발에 관한 연구)

  • Hwang Jae Sin;Jung Dong Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.350-359
    • /
    • 2005
  • Finite element method is a very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate die model is required. Among finite element method, the static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. This study is about analyzing the stamping process problems by using AutoForm commercial software which used static-implicit method. According to this study, the results of simulation will give engineers good information to access the die design of optimization.

Spring-Back Prediction for Sheet Metal Forming Process Using Hybrid Membrane/shell Method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • 윤정환;정관수;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.49-59
    • /
    • 2003
  • To reduce the cost of finite element analyses for sheet forming, a 3D hybrid membrane/shell method has been developed to study the springback of anisotropic sheet metals. In the hybrid method, the bending strains and stresses were analytically calculated as post-processing, using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback, a shell finite element model was used to unload the final shape of the sheet obtained from the membrane code and the stresses and strains that were calculated analytically. For verification, the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. The springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulate both loading and unloading and the experimentally measured data. The CPU time saving with the hybrid method, over the full shell model, was 75% for the punch stretching problem.

A Study on the comparison of FEM and FEM for Backward Impact Extrusion Process (후방 충격압출 성형 공정의 FVM과 FEM의 적용성에 관한 연구)

  • 정상원;조규종;김성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1565-1568
    • /
    • 2003
  • The backward extrusion process is one of the commonly used metal forming processes. In this paper. a battery case which has the rectangular section, is analyzed using a 3D metal forming package(MSC.Superforge). This pacakge uses the finite volume analysis method. It is shown that the MSC.Superforge package using finite volume method provides result very close to those obtained from a finite element analysis package(MSC.Superform). However, the simulation time using the finite volume method was almost 10 % of the simulation time consumed by the other package using finite element method. Moreover, the finite volume method used in MSC.Superforge can eliminate the remeshing problems that make the simulating a metal forming process with severe deformation, such as the extrusion process, so difficult.

  • PDF

Upper-bound Finite Element Simulation Method (상계 유한요소 시뮬레이션 방법)

  • Lee, Chung-Ho
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.233-238
    • /
    • 1997
  • The estimation of the forming force required for metal forming process is unavoidable for selecting suitable machine and dimensioning die and punch parts. For this purpose the upper-bound method turns out to be very practical in simple two-dimensional cases under well-known boundary conditions. However, the application of this method for complicated two-or three-dimentional cases is very limited or practically impossible. The modified application of FEM in a manner of applying the upper bound method(the so-called Upper-bound Finite Element Simulation Method) fortunately provides the posibility of getting important information about the forming process in a simple and quick way before realizing the process on the machine. It is expected to function successfully even in three-dimentional cases. The application procedure has been explained for two-dimensional cases and its usefulness shown.

  • PDF

Spring-back prediction for sheet metal forming process using hybrid membrane/shell method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • F. Pourboghrat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.62-65
    • /
    • 1999
  • To reduce the cost of finite element analyses for sheet forming a 3D hybrid membrance/sheel method has been developed to study the springback of anisotropic sheet metals. in the hybrid method the bending strains and stresses were analytically calculated as post-processing using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback a shell finite element model was used to unload the final shape of the sheet obtained from the membran code and the stresses and strains that were calculated analytically. For verification the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. the springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulateboth loading an unloading and the experimentally measured data. The CPU time saving with the hybrid method over the full shell model was 75% for the punch stretching problem.

  • PDF

A Study on the Pure Stretch Forming Of Al Sheet (알루미늄薄板 의 Stretch Forming 에 관한 硏究)

  • 김동원;권인소
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.64-72
    • /
    • 1983
  • A method of numerical analysis is proposed for the pure stretch forming of A1 sheet by hemi-spherical punch. The analysis is performed by Woo's general method under the condition of variable friction and plastic yielding is based on the new anisotropic yield function proposed by Hill. A comparison of the calculated results with experiment shows good agreement for various lubrication when the initial values of the coefficient of coulomb friction at pole are less than 0.4.

Application of CAE for Precision Material Forming of Electric Parts (정밀 전기, 전자 부품 성형을 위한 해석 틀의 활용)

  • 김석관;이재진;서장원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.185-189
    • /
    • 1994
  • The key factor of quality in precision metal forming is to meet the requirements of parts size and shape. Particular problem of unflatness occurs frequently. This study focuses on figuring out the cause of unflatness. To predict the amount of unflatness after ejection from tool, equivalent temperature method is used. This method, temperature equivalent to the final stress value is calculated, and it is applied as the boundary condition of the linear static analysis. The final of formed part is used as the geometry model of the static analysis.

Superplastic Forming /Diffusion Bonding Processes Design Using a Finite Element Method (유한요소법을 이용한 초소성 성형/확산접합 공정 설계)

  • 홍성석;이종수;김용환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.155-161
    • /
    • 1995
  • Superplastic forming/diffusion bonding(SPF/DB) processes are analyzed using a rigid visco-plastic finite element method. The optimum pressure-time relationship for a target strain rate and thickness distributions were predicted using two-node line element based on membrane approximation for plane strain shapes. Material behavior during SPF/DB of the integral structures with complicated shapes are investigated. The tying condition is employed for the analysis inter-sheet contact problems. A movement of rib structure is successfully prodicted during the forming.

  • PDF