• Title/Summary/Keyword: Formation Flying

Search Result 93, Processing Time 0.02 seconds

Nanosat Formation Flying Design for SNIPE Mission

  • Kang, Seokju;Song, Youngbum;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.51-60
    • /
    • 2020
  • This study designs and analyzes satellite formation flying concepts for the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE) mission, that will observe the near-Earth space environment using four nanosats. To meet the requirements to achieve the scientific objectives of the SNIPE mission, three formation flying concepts are analyzed: a cross-shape formation, a square-shape formation, and a cross-track formation. Of the three formation flying scenarios, the cross-track formation scenario is selected as the final scenario for the SNIPE mission. The result of this study suggests a relative orbit control scenario for formation maintenance and reconfiguration, and the initial relative orbits of the four nanosats meeting the formation requirements and thrust limitations of the SNIPE mission. The formation flying scenario is validated by calculating the accumulated total thrust required for the four nanosats. If the cross-track formation scenario presented in this study is applied to the SNIPE mission, it is expected that the mission will be successfully accomplished.

Sampled-Data Control of Formation Flying using Optimal Linearization (최적 선형화 기반 디지털 재설계 기법을 이용한 편대 비행의 샘플치 제어)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • This paper proposes an efficient sampled-data controller design technique for formation flying. To deal with the nonlinearity in the formation flying dynamics and to obtain a linear, rather than affine, model, we utilize the optimal linearization technique. The digital redesign technique is then developed based on the optimal linear model and formulated in terms of linear matrix inequalities. Simulation results show the advantage of the proposed methodology over the conventional controller emulation technique.

ADAPTIVE BACKSTEPPING CONTROL FOR SATELLITE FORMATION FLYING WITH MASS UNCERTAINTY

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Lee, Sang-Jong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.405-414
    • /
    • 2006
  • Satellite formation flying has become a critical issue in the aerospace engineering because it is considered as an enabling technology for many space missions. Thus, many nonlinear control theories have been developed for the tracking problem of satellite formation flying, which include full-nonlinear dynamics, external disturbances and parameter uncertainty. In this study, nonlinear adaptive control law is developed using an adaptive backstepping technique to solve the relative position tracking problem of the satellite formation flying in the presence of mass uncertainty and the bounded external disturbance. Simulation studies are included to demonstrate the proposed controller performance. The proposed controller is shown to guarantee the system stability against the external bounded disturbances in the presence of mass uncertainty.

Formation Flying of small Satellites Using Coulomb Force

  • Lee, Dong-Hun;Lee, Hyun-Jae;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.84-90
    • /
    • 2006
  • The formation flying of satellites has been identified as an enabling technology for many future space missions. The application of conventional thrusters for formation flying usually results in high cost, limited life-time, and a large weight penalty. Various methods including the use of coulomb forces have been considered as an alternative to the conventional thrusters. In the present investigation, we investigate the feasibility of achieving the desired formation using Coulomb forces. This method has several advantages including low cost, light weight and no contamination. A simple controller based on the relative position and velocity errors between the leader and follower satellites is developed. The proposed controller is applied to circular formations considering the effects of disturbances in initial formation conditions as well as system nonlinearity. Results of the numerical simulation state that the proposed controller is successful in establishing circular formations of leader and follower satellites, for a formation size below 100 m.

A New Method of determining Initial Conditions for Satellite Formation Flying

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Park, Pil-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • Satellite formation flying is the placing micro-satellites with the same mission into nearby orbits to form a cluster. Clohessy-Wiltshire equations are used to describe the relative motion and control strategies between satellites within a cluster, which are known as Hill's equations. Even though Hill's equations are powerful in determining initial conditions for the satellite formation flying, they can not accurately express the relative motion under J2 perturbation. Some methods have been developed for the determination of initial conditions to avoid limits of Hill's equation. This paper gives a new method of determining initial conditions using mean elements. For this research mean elements were transformed to osculating elements using Brouwer's theory and the orbit was propaeated with the consideration of J2-J8 to get a relative position. The results show that satellites within a cluster are maintained in the desired boundary for long period and the method is effective on a fuel saving for satellite formation flying.

TRACKING CONTROL DESIGN USING SLIDING MODE TECHNIQUES FOR SATELLITE FORMATION FLYING

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Park, Pil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.365-374
    • /
    • 2003
  • Satellite formation flying is currently an active area of research in the aerospace engineering. So it has been researched by various authors. In this study, a tracking controller using sliding mode techniques was designed to control a satellite for the satellite formation flying. In general, Hill's equations are used to describe the relative motion of the follower satellite with respect to the leader satellite. However the modified Hill's equations considering the $J_2$ perturbation were used for the design of sliding mode controller. The extended Kalman filter was applied to estimate the state vector based on the measurements of relative distance and velocity between two satellites. The simulation results show that the follower satellite tracks the desired trajectory well by thruster operations based on the sliding mode control law.

Sliding Mode Control for the Configuration of Satellite Formation Flying using Potential Functions

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Kim, Hae-Dong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.56-63
    • /
    • 2005
  • Some methods have been presented to avoid collisions among satellites for satellite formation flying mission. The potential function method based on Lyapunov's theory is known as a powerful tool for collision avoidance in the robotic system because of its robustness and flexibility. During the last decade, a potential function has also been applied to UAV's and spacecraft operations, which consists of repulsive and attractive potential. In this study, the controller is designed using a potential function via sliding mode technique for the configuration of satellite formation flying. The strategy is based on enforcing the satellite to move along the gradient of a given potential function. The new scalar velocity function is introduced such that all satellites reach the goal points simultaneously. Simulation results show that the controller drives the satellite toward the desired point along the gradient of the potential function and is robust against external disturbances.

STABILITY REGION ESTIMATES FOR THE SDRE CONTROLLED ATTITUDE SYSTEMS IN SATELLITE FORMATION FLYING

  • Chang, In-Su;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2007.10a
    • /
    • pp.135-138
    • /
    • 2007
  • The present work is to estimate the stability region of the State-Dependent Riccati Equation (SDRE) controlled system, which is used for a decentralized coordinated attitude control in satellite formation flying. In this research, currently emerging methods which estimate region of attraction for the SDRE controllers are introduced and the methods are applied to attitude control systems. The results guarantee the stability of the given decentralized coordinated attitude control system in satellite formation flying.

  • PDF

Design of Optimal Controllers for Spacecraft Formation Flying Based on the Decentralized Approach

  • Bae, Jong-Hee;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.58-66
    • /
    • 2009
  • Formation controller for multiple spacecrafts is designed based on a decentralized approach. The objective of the proposed controller is to make each spacecraft fly to the desired waypoints, while keeping the formation shape of multiple spacecrafts. To design the decentralized formation controller, the output feedback linearization technique using error functions for goal convergence and formation keeping is utilized for spacecraft dynamics. The primary contribution of this paper is to proposed optimal controller for formation flying based on the decentralized approach. To design the optimal controller, eigenvalue assignment technique is used. To verify the effectiveness of the proposed controller, numerical simulations are performed for three-dimensional waypoint-passing missions of multiple spacecrafts.

OPTIMAL FORMATION TRAJECTORY-PLANNING USING PARAMETER OPTIMIZATION TECHNIQUE

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Lee, Woo-Kyoung
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.209-220
    • /
    • 2004
  • Some methods have been presented to get optimal formation trajectories in the step of configuration or reconfiguration, which subject to constraints of collision avoidance and final configuration. In this study, a method for optimal formation trajectory-planning is introduced in view of fuel/time minimization using parameter optimization technique which has not been applied to optimal trajectory-planning for satellite formation flying. New constraints of nonlinear equality are derived for final configuration and constraints of nonlinear inequality are used for collision avoidance. The final configuration constraints are that three or more satellites should be placed in an equilateral polygon of the circular horizontal plane orbit. Several examples are given to get optimal trajectories based on the parameter optimization problem which subjects to constraints of collision avoidance and final configuration. They show that the introduced method for trajectory-planning is well suited to trajectory design problems of formation flying missions.