• Title/Summary/Keyword: Form parameter

Search Result 943, Processing Time 0.027 seconds

Parameter Reduction in Digital Adaptive Flight Control System for Spaceplanes

  • Togasaki, Yoshihiro;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.995-1000
    • /
    • 2004
  • A digital adaptive flight control system is presented for a Japanese automatic landing flight experiment vehicle (ALFLEX). In previous adaptive control systems based on a linear-parameter-varying (LPV) form, the output behavior was excellent, while the behavior of the adjusted parameters was unsatisfactory. In the present study, to obtain a more appropriate parameter adjustment law, the relationship between the coefficient matrices in a continuous-time state equation and the coefficients of a pulse transfer function in a discrete system for conventional aircraft is investigated. As a result, it is revealed that the coefficients of the numerator can be treated as a linear function of dynamic pressure (linear-parameter-varying: LPV), while the coefficients of the denominator can be treated as constant (linear-time-invariant: LTI). From the above analysis, an improved parameter adjustment law is derived by reducing the number of the adjustment parameters. Simulation results also revealed both good output tracking and good parameter adjustment compared with the previous results.

  • PDF

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.

Investigation and Numerical Analysis of Node Connectors in Free-Form Spatial Structures

  • Hwang, Kyung-Ju;Park, Don-U;Park, Sun-Woo;Knippers, Jan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.87-95
    • /
    • 2007
  • The recent completions of free-form spatial structures provide us a very attractive form. To realize such an extraordinary shape, it is absolutely necessary that the connector systems have to be investigated the characteristics of the systems and analyzed with a practicable method. In this context, this research consists of not only literature research but also numerical analysis with selected connector systems, which was adopted in real free-form spatial structures. For numerical analysis, especially, finite element analysis (FEA) is performed with a various test parameter using a commercial program ANSYS. Consequently, the general characteristics of node connectors the moment-rotation-curves are presented by considering a large deformation effect as well as a multi-linear material properties.

  • PDF

Influence of the anterior arch shape and root position on root angulation in the maxillary esthetic area

  • Petaibunlue, Suweera;Serichetaphongse, Pravej;Pimkhaokham, Atiphan
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Purpose: This study was conducted to characterize the relationship of the angulation between the tooth root axis and alveolar bone axis with anterior alveolar(AA) arch forms and sagittal root position (SRP) in the anterior esthetic region using cone-beam computed tomography (CBCT) images. Materials and Methods: CBCT images that met the inclusion and exclusion criteria were categorized using a recent classification of AA arch forms and a SRP classification. Then, the angulation of the root axis and the alveolar bone axis was measured using mid-sagittal CBCT images of each tooth. The relationships of the angulation with each AA arch form and SRP classification were evaluated using 1-way analysis of variance and a linear regression model. Results: Ninety-eight CBCT images were included in this study. SRP had a greater influence than the AA arch form on the angulation of the root axis and the alveolar bone axis(P<0.05). However, the combination of AA arch form and SRP was more predictive of the angulation of the root axis and the alveolar bone axis than either parameter individually. Conclusion: The angulation of the root axis and alveolar bone axis demonstrated a relationship with the AA arch form and SRP in teeth in the anterior esthetic region. The influence of SRP was greater, but the combination of both parameters was more predictive of root-to-bone angulation than either parameter individually, implying that clinicians should account for both the AA arch form and SRP when planning implant placement procedures in this region.

The Three-Stage Cluster Unrelated Question Model

  • Ahn, Seung-Chul;Lee, Gi-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.55-65
    • /
    • 2003
  • In this study, we systemize the theoretical validity for applying unrelated question model to three-stage cluster sampling method and derive the estimate and it's variance of sensitive parameter. We derive the minimum variance form under the optimal values of the subsample sizes when the cost are fixed. Under the some given precision, we obtain the optimal values of the subsample sizes and derive the minimum cost form by using them.

  • PDF

An interpolation method of b-spline surface for hull form design

  • Jung, Hyung-Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.195-199
    • /
    • 2010
  • This paper addresses the problem of B-spline surface interpolation of scattered points for a hull form design, which are not arbitrarily scattered, but can be arranged in a series of contours permitting variable number of points in the contours. A new approach that allows different parameter value for each point on the same contour has been adopted. The usefulness and quality of the interpolation has been demonstrated with some experimental results.

Stability Analysis of Modified Coupled-Form Digital Filter Using a Constructive Algorithm (변형된 선합성수 디지털 필터의 안정도 해석)

  • 남부희;김남호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.11
    • /
    • pp.430-435
    • /
    • 1985
  • Using the constructive algorithm proposed by Brayton and Tong, we analyze the stability of a modified coupled-form digital filter with quantization and overflow nonlinearities, and find the regions in the parameter plane where the filter is globally asymptotically stable. In these regions, the absence of zero-input limit cycles is ensured. This constructive algorithm gives less conservative stability results than the application of Jury-Lee stability criterion does.

  • PDF

Discrimination of Arcing Faults from Normal Distribution Disturbances by Wave form Distortion Analysis

  • Kim, C. J.
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.52-57
    • /
    • 1996
  • Detection of arcing high impedance faults has been a perplexing in the power distribution protection. Transient analysis of distribution disturbances for fault discrimination from other normal events is important for a secure protection of the power system. A simple parameter of wave form distortion quantification is used to analyze the behaviors of arcing faults and normal distribution disturbances. Theoretical perspectives of the transients were studied and actual disturbances were examined. From this investigation, a discrimination guideline based on the revised crest factor is developed. The discrimination method has a high potential to enhance the reliability and security for the distribution system protection.

  • PDF

Lumped Parameter Model of Transmitting Boundary for the Time Domain Analysis of Dam-Reservoir System (댐의 시간영역 지진응답 해석을 위한 호소의 집중변수모델)

  • 김재관;이진호;조정래
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.27-38
    • /
    • 2001
  • A mechanical lumped parameter model is proposed for the dynamic modeling of a semi-infinite reservoir. A semi-analytic transmitting boundary is derived for a semi-infinite 2-D reservoir of constant depth. The characteristics of the solution are examined in both frequency and time domains. Mass, damping and spring coefficients of the mechanical model are obtained to preserve the major features of the solution such as eigenfrequencies and the shapes of Bessel functions that appear as kernels in the convolution integrals. The lumped parameter model in its final form consists of two masses, a spring and two dampers for each eigenfrequency. Application examples demonstrated that the new lumped parameter model could be used for the time domain analysis of dam-reservoir systems.

  • PDF

Stability and Robust H Control for Time-Delayed Systems with Parameter Uncertainties and Stochastic Disturbances

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Lee, Sang-Moon;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.200-214
    • /
    • 2016
  • This paper investigates the problem of stability analysis and robust H controller for time-delayed systems with parameter uncertainties and stochastic disturbances. It is assumed parameter uncertainties are norm bounded and mean and variance for disturbances of them are known. Firstly, by constructing a newly augmented Lyapunov-Krasovskii functional, a stability criterion for nominal systems with time-varying delays is derived in terms of linear matrix inequalities (LMIs). Secondly, based on the result of stability analysis, a new controller design method is proposed for the nominal form of the systems. Finally, the proposed method is extended to the problem of robust H controller design for a time-delayed system with parameter uncertainties and stochastic disturbances. To show the validity and effectiveness of the presented criteria, three examples are included.