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Stability Analysis of Modified Coupled-Form
Digital Filter Using a Constructive Algorithm
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Abstract

Using the constructive algorithm proposed by Brayton and Tong, we analyze the stability of

a modified coupled-form digital filter with quantization and overflow nonlinearities,
the regions in the parameter plane where the filter is globally asymptotically stable.

and find
In these

regions, the absence of zero-input limit cycles is ensured. This constructive algorithm gives less

conservative stability results than the application of Jury-Lee stability criterion does.

1. Introduction

Digital filters are often implemented using a
microprocessor with fixed-point arithmetic. Due
to the finiteness of the signal wordlength, digi-
tal filters become nonlinear[1], and for this rea-
son the output of the filter deviates from what
is actually desired.

In two papers[2] and [3], Brayton and Tong
established some significant results which make
it possible to construct computer-generated Lya-
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punov functions to analyze the stability of non-
linear systems. In this paper, we find the regions
in the parameter plane where a modified coupl-
ed-form digital filter is globally asymptotically
stable using the constructive algorithm. The au-
thors of [4] suggested this specific digital filter
for further study.

2. Constructive Stability Algorithm

In this section, we show how the constructive
algorithm can be applied to the stability analy-
sis of systems described by a set of difference
equations

x(k+D=g[x(k)] (E)
where x€R” g:R"—R"k=0,1,2,---, and R”denotes
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the set of real-valued n-tuples.

In [2] and [3], a set A of matrices is said to
be stable if there exists a bounded neighborhood
of the origin WCR” such that MW S W for every
Me A, Equivalently. there exists a vector norm
|-]» such that |[Mx|,<|x]|, for all MEA and x
&R" Therefore, v={x/|, defines a Lyapunov fun-
ction for A. Next, a set A of matrices is said to
be asymptotically stable if there exists a number
p>1 such that pA is stable.

In [2] and [3], a constructive algorithm is given
to determine whether a set of m real matrices
A={My,-Mp-1} is stable by starting with an
initial polyhedral neighborhood of the origin W
and by defining a sequence of regions W,.; by

Wao 1 =H[U M: W,], where i=(k—1)mod m. (1)
J=0

and where H[W] is the convex hull of W. Now
A is stable if and only if

W= Qowk @)

is bounded.

To utilize the constructive algorithm, we rew-
rite the given system equation (E) as

x(k+1)=M[x(k)Ix(k) 3)
where M[x(k)] is chosen so that M(z)r=g(x).
If we let M denote the set of all matrices
obtained bv varying x in M(x) overall allowable
values, then we can rewrite (3) equivalently as

x(k+1)=M,x(k), M,&M. 4)

In [2] and [3], it is shown that the equilibrium
x=0 of (E) is globally asymptotically stable if
the set of matrices M is asymptotically stable.

We will call any nontrivial periodic solution of
(E) a limit cycle. Note that if a system (E) is
globally asymptotically stable, then no limit cycles
will exist for system (E).

For those terms related to stability, refer to
[5]. For the concept of an extreme matrices in a
linear vector space of real matrices, refer to [6].
Also refer to [2], [3] and [7) for further details
of the constructive algorithm.

3. Nonlinearities in Digital Filters

In fixed-point arithmetic, quantization can be
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performed by substituting the nearest possible
number that can be represented by the limited
number of bits. This type of nonlinearoperation
is called a round off quantizer. Another possibl-
ity consists of discarding the least significant
bits in the number. If the signals are represent-
ed by sign and magnitude then we have a mag-
nitude truncation quantiza'tion nonlinearity,

If an overflow occurs, a number of different
actions may be taken. If the numberthat caused
the overflow is replaced by a number having
the same sign, but with a magnitude correspond-
ing to the overflow level, saturation overflow is
obtained. Zeroing overflow substitutes the num-
ber zero in case of an overflow. In two’s com-
plement arithmetic, the most significant bits that
caused the overflow are discarded. In this case
two’s cnmplement overflow is used, and over-
flow in intermediate results do not cause errors,
as long as the final result does not have over-
flow. Another way of dealing with overflow is
the triangular overflow as proposed by Eckhardt
and Winkelnkemper(see[1]). For the details and
characteristics of these nonlinearities, refer to
[1] and [8].

It is possible to have different wordlengths for
the various signals in the filter, resulting in dif-
different
overflow levels. We will assume throughout this

ferent quantization stepsizes and/or

paper that all quantizers in a filter have the
same quantization stepsize, q, and are the same
type. e.g., round off or truncation. Similarly, we
will assume that all overflow nonlinearities in
a filter have the same overflow level, p, and
are the same type.

The above nonlinearities will be viewed as be-
longing to a sector [k, k,], where

k,= flw)/w< k, for all w €R. (5)

Under the above assumptions, we view the qu-
antization nonlinearities as belonging to the sec-
tor [0, k,] where

k = {1 for truncation )
¢ 12 for roundoff.

Henceforth, k,will represent the upper slope of



the sector that contains the quantization nonlin-
earity. The overflow nonlinearilies are represent-

ed as belonging to the sector [k,, 1] where
0 saturation or zeroing
k,= { —1/3 triangular (7)

—1 two’s complement.

Henceforth, k, will represent the lower slope of
the sector that contains the overflow nonlinearity.

4. Modified Coupled-Form Digital Filter

Yan and Mitra [9] proposed two variations of
the well-known coupled form. These new digital
filter structures have lower pole sensitivites and
roundoff noise variances than those of the coupl-
ed form and have been derived using the netwo-
work transformation approach of Szczupak and
Mitra [10]. There are two structures, first and
second. In this paper, second structure will be
employed. The linear filter is globally asymptoti-
cally stable if and only if its poles lie within
the region in which the parameters a and b must
satisfy.

b’1+a’) < 1. (8)

Quantization is assumed to take place after
each multiplication and overflow is placedafter
each addition. This structure is realistic and is

shown in Fig. 1.

4,1 Constructive Stability Results
The state equations for the structure with four
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quantizers in Fig. 1 are

x,(k +1) =P,[Q.(bx.(k)) +Q,[aQ,(bx,(k})]](9)
X (k+1) = P,[-Q.bx,(k)) +Q.[aQ,(bx,(k))]]

with Q,, 1=1, 2, 3, 4 representing the quantizers
and P, i=1,2 represening the overflow nonlin-
earities, which satisfy the sector conditions (6)
and (7), respectively. The state equations are
written as

x(k+1) =M][x(k) Ix(k). (10)
By defining

—_ Pl[Ql(b 2)+Q3( QZ(b 1))
$100="0 ) + Qs e ) :

b2 (X ) :Q—“légjz)

Ba(x)= Qaa!%gz{)lf:])
¢4<x>:9£§3‘§§§2 (11)

N Pa[—Qa(bx;)+Qa[aQ, (bx2)]]
s(x) = P2 et Qulau )]

b0 = QlaQu (bx,)]

3Q|(BX2
the matrix M(x(k)) is given by
M(X(k))'—: ab¢7(x) b¢s(X) (12)

~bgy{x) abg, o(X)~

where ¢7(x)=¢(x) $s(x) $4(x),
¢5(X):¢I(X) ¢2(X)
Pa(x)=¢4(x) ¢s5(x) and
¢10(X):¢2(X) ¢5(X) ¢6(X)-

\j

M_,@V_@.__

Fig. 1. Modified coupled-form with four quantizers-second structure.
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The functions ¢:(x),1=7,8,9,10 are bounded by
constants ;

ci=¢ix)=<c,, 1=8,9 13)
di£¢:(x)=d2, i=7,10
where
Ci:kok%
c2=k%
d;=kokqg
d;=kq -

Thus, the extreme matrices of the set M are

[ |abe; bd; ”,i,j,k,m~1,2}' (14)
—bCk abdm

In this case, the constructive algorithm uses six-

teen extreme matrices for every point in the a-
b parameter plane. If the overflow nonlineariti-
es are absent, then the set of extreme matrices
with
four saturation or zeroing overflow nonlineariti-

in this case is the same as for the filter

es.

Using these extreme matrices, we can get the
stability results by applying the constructive al-
gorithm. Some of those results are shown in Fig.
2-4. Only half of these regions are shown, since
they are symmetric about the b-axis. We used
the value of ©==1.001 to show that A is asymp-
totically stable for a stable matrix A.

-1

Fig. 2. Stability region for magnitude truncation
quantizer and saturatino or zeroingover-
flow.

4.2 Jury and Lee Stability Results

For the digital filters with quantizers and no
overflow nonlinearities, an absolute stability cri-
terion by Jury and Lee[ll] can be used to de-
termine sufficient conditions for the global asy-
mptotic stability of the equilibrium of the sys-
tem.

A system with several nonlinearities is repre-
sented by the system shown in Fig. 5. The m no-
nlinear elements are represented by the vector-
valued function f(w) where f,(w,) is the output

-1

Fig. 3. Stability region for magnitude truncation

quantizer and two’s complement over-
flow.

b

4

1

0 } -2

-1

Fig. 4. Stability region for roundoff quantizer
and triangular overflow.
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of the i -th nonlinear element. The input of this
element is the 7 -th component of the vector w’
s Wal.

The inputs and outputs of the nonlinear ele-
with
transfer functions, g,(z), which are assumed to
be controllable and observable[12], that are the
elements of the m x m transfer matrix G(z). T-

=[w,.

ments are interconnected by linear filters

he linear filter g, (z) connects the output of the
7-th nonlinear element and the input of the -
th nonlinear element. We assume that each ele-
ment g,,(z) has all of its poles within the unit
circle except possibly one pole at z=1. We ass-
ume that the nonlinearities f,(w,) satisfy the fol-

lowing conditions:

1) f(0) =0

)0 < f(w) /w, < k,, for w,#0 (15)
i) w(k)—0 implies y(k)—~0
iv) —oo< df(w,) /dw, < oo , i=12,m

i
v

where k,is the i-th diagonal element of the m

X m matrix K.

zero input w
‘fz\ fw) G2) y

Fig. 5. A general system with many nonlineari-

ties.

—1
Fig. 6. Stability region for maginitude truncation

quantizer by theoreml.
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Theorem 1 [11]: The system of Fig.5 satisfying
the above conditions for G{(z) with nonlinearities
described by (15) is globally asymptotically stable
if

H(z)=2K ' +G(z)+G*(z) (16)

is positive definite for all z: |z|=1, where G*(z)
denotes the complex conjugate transpose of G(z).

If we apply the Jury and Lee criterion to this
filter with four quantizers and no overflow, the
matrix G(z) may be written as

0 bz ! 0 —bz™!
—bz™! 0 —bz"! 0
Glz)=
(z) 0 . 0 0 (17)
—a 0 1] 0
The matrix H(z), given by
2k, ~b(z—z') 0  ~(atbz'!)
b(Z'”Z-]) 2/k22 —(a+bz") 0
H(z)=
0 --(a+bz) 2/kss 0
7 —(a+bz) 0 0 2/Kas )
(18)
must be positive definite for all z:jz|=1. For

maghnitude truncation quantizers, k;=1 and for
roundoff quantizers, k;=2,1=1, 2, 3, 4. The region
of the global asymptotic stability in the parame-
ter plane for the case of the magnitude truncation
quantizers is shown in Fig. 6. Only half of the
region is shown, since it is symmetric about the
b-axis.

As can be seen from Figures 2 and 6 for the
digital filter with quantizer and no overflow no-
nlinearities, the constructive algorithm givesless
conservative results than the application of the
Jury and Lee stability criterion. All of the resul-
ts obtained seem to be new. Those regions are
depicted as the unhatched regions in thefigures.

5. Conclusion

Using the constructive stability algorithm pro-
posed by Brayton-Tong, we analyzed the stabil-
ity of the equilibrium x=0 of a modified coupl-
ed-form digital filter described by a set of the
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difference equations. All the results seem to be
new. Also we used the Jury and Lee absolute
stability criterion for comparison with the con-
structive results. Both results yield sufficient co-
nditions for global asymptotic stability in terms
of the parameters of a given filter under zero-

input conditions. These results constitute  also
sufficient conditions for the absence of zero-in-
put limit cycles.

While existing methods[1] [8] of stability ana-
lysis are generally different for each particular
structure, the constructive algorithm allows us
to use one method to study the stability of non-
linear digital filtes , and moreover it may be
applied to higher order filters by considering
the higher order filter as an interconnection of
lower order structures. There are many other
digital filter structures such as universal CGIC
filters that could also be studied.
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